

AUTHOR: Amarjeet

BCA III

PPU, PATNA.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 1 of 124

Unit 1

VISUAL BASIC

Introduction: Need of visual languages, integrated development

environment (IDE), advantage of Visual Basic, characteristics and features

of Visual Basic – IDE, Projects, user interface, objects oriented, visual

development and event-driven programming, forms/graphic controls, data

processing, sharing with windows and internet applications. 12 Hrs

Unit 2

Visual Basic programming and tools: An introduction to Visual Basic

programming, simple program construction, statements, input/outputs,

comments, editor, subroutines, controls flow statements, objects and

variants. 10 Hrs

Unit 3

Designing user interface – elements of user interface, understanding

forms, menus and toolbars, designing menus and toolbars, building

dynamic forms, drag and drop operations, working with menus, customizing

the toolbars. 10 Hrs

Unit 4

Controls – textbox, combo box, scroll bar and slider control operations,

generating timed events, drawing with Visual Basic using graphics controls,

coordinate systems and graphic methods, manipulating colors and pixelswith

Visual Basic, working with ActiveX controls. 10 Hrs

Unit 5

Menus: Creating a menu system, Creating and accessing pop-up menu,

Modifying menus at runtime, adding menu items at run-time, data access

methods, creating, reading and writing text files, data controls, creating

queries. Report generation. 10 Hrs

Reference Books:
1. David Schneider, Introduction to Programming using Visual Basic, PHI.

2. Mohammed Azam, Programming with Visual Basic 6.0, Vikas

Publications.

3. Dietel & Dietel, Visual Basic Programming, Pearson Education.

4. David I. Schneider, An Introduction To Programming Using Visual Basic

.Net®, PHI.

5. C Muthu , Visual Basic.Net, Tata Mc Graw Hill Year of Publication.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 2 of 124

Unit I & UNIT III
INTRODUCTION & DESIGNING USER INTERFACE

INTRODUCTION
VISUAL BASIC is a high level programming language which evolved from

the earlier DOS version called BASIC (Beginners' All-purpose Symbolic

Instruction Code). However, people prefer to use Microsoft Visual Basic today, as

it is a

well-developed programming language and supporting resources are

available everywhere.

Visual Basic is easy to learn Programming language. With Visual Basic

you can develop Windows based applications and games. Visual Basic is much

easier to learn than other language (like Visual C++), and yet it’s powerful

programming language.

Now, there are many versions of VB exist in the market, the most

popular one and still widely used by many VB programmers is none other

than Visual Basic 6 . We also have VB.net, Visual Basic 2005, Visual Basic 2008

, Visual Basic 2010, Visual Basic 2012 and Visual Basic 2013 . VB2008,

VB2010, VB2012 and VB2013 are fully object oriented programming (OOP)

languages.

Microsoft Visual Basic development system version 6.0 is the most

productive tool for creating high performance components and applications.

Visual Basic 6.0 offers developers the Ability to create robust applications that

reside on the client or server, cooperate in a distributed n-tier environment.

Visual Basic 6.0 is the Rapid Application Development (RAD) tool available

either as a stand-alone product or as a part of the VisualStudio 6.0 suite of

tools.

NEED OF VISUAL LANGUAGES OR IMPORTANCE OF VB
Visual Basic is regarded as the third generation event-driven

programming language. It was released in 1987. Being the first visual

development tool from Microsoft, it is considered as one of the most powerful

programming languages. As compared to other computer programming

languages, such as, C, C++, it is easy to learn and understand, provided that

one has determination and dedication to do so.

Visual basic programming language allows programmers to create

software interface and codes in an easy to use graphical environment. VB

is the combination of different components that are used on forms having

specific attributes and actions with the help of those components. On the

one hand it allows programmers to develop widows based applications

rapidly; on the other hand, it helps greatly in accessing data bases, using

ADO while letting the programmers use ActiveX controls and various objects.

While it is intended more to develop applications, it is also useful for

http://www.amazon.com/gp/product/141962895X/ref%3Das_li_qf_sp_asin_tl?ie=UTF8&tag=liewvoonkiong&linkCode=as2&camp=1789&creative=9325&creativeASIN=141962895X
http://www.vbtutor.net/vb2008/vb2008tutor.html
http://www.vbtutor.net/vb2008/vb2008tutor.html
http://www.vbtutor.net/index.php/visual-basic-2010-tutorial/
http://www.vbtutor.net/index.php/visual-basic-2012-tutorial/
http://www.vbtutor.net/index.php/visual-basic-2013-tutorial/

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 3 of 124

games development for particular or limited purposes, unlike C++ that is more

suitable for developing games.

As compared to other languages, Visual basic may be slower though, yet

it is flexible and it can be rightly said that things that are difficult inother

languages are comparatively easier in visual basic programming language. It

may also be said that, since it is one of the most popular programming

languages, lots of related books and material and other resources are

available and can be accessed for developing programming skills at visual

basic programming language conveniently.

One of the most important things to be considered with regard to

programming in Visual basic is that the structure of VB is designed in a way

that allows programmers to create executable code – Exe files. It enables

programmers to develop programs that can be used as front end to databases.

Besides, it’s with the help of visual basic tools, one can change the abstract

ideas into programs or into the whole software while it allows revising and

modifying the programs fittingly.

Once you have advanced your skills at visual basic programminglanguage,

you can move to develop your skills at other languages, such as, VB script.

However, it all depends upon your interest and desire. It must be noted that the

sole objective of any computer programming language is to save time and

efforts of the users while making their lives easier. Visual Basic is one of the

most important programming languages having a powerful front-end tool

which is able to achieve simple and complex business requisites in and

effective and efficient manner.

EVOLUTION OR HISTORY OF VISUAL BASIC
BASIC (Beginners All Purpose Symbolic Instruction Code) was

developed in 1960’s by Profs Kemeny & Kurtz. 1970’s Bill gates implemented

BASIC in several PCs’.

Alan Cooper is considered the father of Visual Basic. In 1987, the then

Director of Applications Software for Coactive Computing Corporation wrote

a program called Ruby (Tripod) that delivered visual programming to the

average programmer/user. Alan Cooper developed VB and sold to Microsoft

in 1988.

The Visual Basic (VB) system is a fourth generation programming

system which produces much of the code itself as the programmer designs

the interface for his or her application. Microsoft surveys in the late 1990's

showed that roughly two-thirds of all business applications programming on

PCs was being done in Visual Basic.

Visual Basic 1.0 for Windows was first released on May 20, 1991 at the

Windows World convention in Atlanta Georgia.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 4 of 124

VB version 2.0 for Windows (November 1992) was faster, more

powerful and easier to use than version 1. VB 2 was also available in a freeware

student release called the Primer edition.

Visual Basic 3.0 (1993) added tools to access and control databases

and Object Linking and Embedding (OLE) version 2. It came in Standard

and Professional versions. A superset of VB, called Visual Basic for

Applications, was released as part of Microsoft Excel 5 and Microsoft Project

4 in 1993. It has since become the internal programming language of the

Microsoft Office family of products, and is available for license by other

software companies.

Visual Basic 4 was released in 1995 and supported the new Windows 95

family of 32-bit operating systems. The Professional Edition could also compile

code to run on the older 16-bit Windows 3.x systems. Visual Basic Scripting

Edition (VBScript) was also announced in 1995. VBScript is used to write

embedded code for inclusion in web pages, although not all web browsers will

run VBScript.

Visual Basic 5 added, among other things, the ability to create true

executables and to create your own custom controls. It also supported

Microsoft's Active-X technology.

Visual Basic 5 was available in Standard (Learning), Professional and

Enterprise Editions.

Visual Basic 6 (VB6) was introduced in 1998 and was included as part

of a package known as Visual Studio 6.0. VB6 added new capabilitiesin the

areas of data access, Internet features, controls, component creation,

language features and wizards. To quote Microsoft's web site, «Visual Basic

6.0 features provide graphical, integrated data access to any ODBC or OLE

DB data source, and additional database-design tools for Oracle and

Microsoft SQL Server™-based databases. New Web development features bring

the easy-to-use, component-based programming model of Visual Basic tothe

creation of HTML- and Dynamic HTML (DHTML)-based applications. Many

organizations are still using this version today.

Version Year New Features

VB 1.0 1991
The interface was barely graphical, using extended

ASCII characters to simulate the appearance of a GUI.

VB 2.0 1992
The programming environment was easier to use, and

its speed was improved.

VB 3.0 1993
VB3 included a database engine that could read and

write Access databases.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 5 of 124

VB 4.0 1995
32bit and It also introduced the ability to write

classes in Visual Basic.

VB 5.0

1996

The ability to create custom user controls, as well as

the ability to compile to native Windows executable

code, speeding up runtime code execution.

VB 6.0

1998

Improved in many areas including the ability to

create web-based applications using Internet

Explorer. Visual Basic 6 is no longer supported.

INTEGRATED DEVELOPMENT ENVIROMENT
An Integrated Development Environment (IDE) is a software

application that provides comprehensive facilities to computer programmers for

software development. An IDE normally consists of a source code editor, build

automation tools and a debugger.

WHY VB IS CALLED IDE

One of the most significant changes in Visual Basic 6.0 is the Integrated

Development Environment (IDE). IDE is a term commonly used in the

programming World to describe the interface and environment that we use

to create our applications. It is called integrated because we can access

virtually all of the development tools that we need from one screen called an

interface. The IDE is also commonly referred to as the design environment, or

the program.

Integrated Development Environment (IDE) consists of inbuilt

compiler, debugger, editors, and automation tools for easy development of

code. Visual Basic.net 2006 IDE can be accessed by opening a new project. IDE

was first introduced with version 5.0 and Integrated Development

Environment of Visual Studio.net 2008 had undergone minor design

changes. VB IDE consists of Solution Explorer, Toolbox, Form, Properties

Window, and Menu Bar. In Visual Studio windows related to a project are

combined together and placed at certain locations on the screen. This type

of IDE is known as Multiple Document Interface or MDI. It also having the

great feature called as drag and drop. We can drag & the drop the controls

without writing single line of coding.

The below diagram shows the development environment with all the

important points labeled. Many of Visual basic functions work similar to

Microsoft word e.g. the Tool Bar and the tool box is similar to other products

on the market which work off a single click then drag the width of the object

required. The Tool Box contains the control you placed on the form window.

All of the controls that appear on the Tool Box controls on the above picture never

runs out of controls as soon as you place one on the form another awaits you

on the tool box ready to be placed as needed.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 6 of 124

Elements of Integrated Development Environmental (IDE).

The Visual Basic IDE is made up of a number of components

 Menu Bar

 Tool Bar

 Project Explorer

 Properties window

 Form Layout Window

 Toolbox

 Form Designer

 Object Browser

In previous versions of Visual Basic, the IDE was designed as a Single

Document Interface (SDI). In a Single Document Interface, each window is a

free-floating window that is contained within a main window and can move

anywhere on the screen as long as Visual Basic is the current application.

But, in Visual Basic 6.0, the IDE is in a Multiple Document Interface (MDI)

format. In this format, the windows associated with the project will stay

within a single container known as the parent. Code and form-based windows

will stay within the main container form.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 7 of 124

ADVANTAGES OF VB

1. The structure of the Basic programming language is very simple,

particularly as to the executable code.

2. VB is not only a language but primarily an integrated, interactive

development environment (“IDE“).

3. The VB-IDE has been highly optimized to support rapid application

development (“RAD”). It is particularly easy to Develop Graphical User

Interfaces and to connect them to handler functions provided by the

application.

4. The graphical user interface of the VB-IDE provides intuitively appealing

views for the management of the program structure in thelarge and the

various types of entities (classes, modules, procedures, forms,).

5. It is an Event Driven Programming which provides complete control

to the end user.

6. VB is a first Programmer friendly language in the world.

7. VB provides a comprehensive interactive and context-sensitive

online help system.

8. When editing program texts the “IntelliSense” technology informs you

in a little popup window about the types of constructs that may be

entered at the current cursor location.

9. Visual Basic 6.0 features provide graphical, integrated data access to

any ODBC or OLE DB data source, and additional database-design tools

for Oracle and Microsoft SQL Server-based databases.

10. New Web development features bring the easy-to-use, component- based

programming model of Visual Basic to the creation of HTML- and

Dynamic HTML (DHTML)-based applications

11. VB is a component integration language which is attuned to

Microsoft’s Component Object Model (“COM”).

12. COM components can be written in different languages and then

integrated using VB.

13. Interfaces of COM components can be easily called remotely via

Distributed COM (“DCOM”), which makes it easy to construct

distributed applications.

14. COM components can be embedded in / linked to your application’s

user interface and also in/to stored documents (Object Linking and

Embedding “OLE”, “Compound Documents”).

15. There is a wealth of readily available COM components for many

different purposes.

16. Visual Basic is built around the .NET environment used by all Microsoft

Visual languages, so there is very little that can’t be done in Visual Basic

that can be done in other languages (such as C#).

http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/IntelliSense
http://en.wikipedia.org/wiki/Object_Linking_and_Embedding
http://en.wikipedia.org/wiki/Object_Linking_and_Embedding

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 8 of 124

DISADVANTAGES OF VB

1. Visual basic is a proprietary programming language written by Microsoft,

so programs written in Visual basic cannot, easily, be transferred to other

operating systems. It’s a platform dependent it only runs on MS

Windows operating system.

2. There are some, fairly minor disadvantages compared with C. C has

better declaration of arrays – it’s possible to initialize an array of

structures in C at declaration time; this is impossible in VB.

EVENT DRIVEN PROGRAMMING

Event-driven programming is a programming paradigm in which the flow

of program execution is determined by events - for example a user action such

as a mouse click, key press, or a message from the operating system or

another program is known as the Event Driven Programming. VB

programming is also based on Events.

An event-driven application is designed to detect events as they occur,

and then deal with them using an appropriate event-handling procedure.

When you fire an event, the code in the event procedure is executed,

and then visual basic performs its operations as per the instructions written

in the event procedure code. For example, in the first sample program, when

you click the 'Print' button, the click event is fired, and then the code in the

click event procedure gets executed. The code tells Visual Basic to print a

text on the form. So as a result, you see a text printed on the form.

Example:

Write the following code in the DblClick event procedure of the form.

Private Sub Form_DblClick()

Print "You have double-clicked"

End Sub

Output:

When you double-click on the form, the DblClick event procedure of the Form

object is invoked, and then the code in the DblClick event procedure is

executed. Thus, the code instructs Visual Basic to print a text on the form.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 9 of 124

CHARACTERISTICS AND FEATURES OF VISUAL BASIC
Visual Basic (VB) is a unique computer language---at least it was when

it first came out. Now there are many imitators. VB allows you to quickly

and easily develop a bank of visual controls with sliders, switches and meters

or a complex form for a user to fill out. It uses the BASIC language which is

known to most computer programmers, and which can be learned quickly if

it is not already known.

IDE

Integrated Development Environment (IDE) consists of inbuilt

compiler, debugger, editors, and automation tools for easy development of

code. Visual Basic.net 2006 IDE can be accessed by opening a new project. IDE

was first introduced with version 5.0 and Integrated Development

Environment of Visual Studio.net 2008 had undergone minor design

changes. VB IDE consists of Solution Explorer, Toolbox, Form, Properties

Window, and Menu Bar. In Visual Studio windows related to a project are

combined together and placed at certain locations on the screen. This type

of IDE is known as Multiple Document Interface or MDI. It also having the

great feature called as drag and drop. We can drag & the drop the controls

without writing single line of coding.

GUI Interface or User Interface

VB is a Graphical User Interface (GUI) language. This means that a VB

program will always show something on the screen that the user can interact

with (usually via mouse and keyboard) to get a job done. The first step in

building the VB program is to get the GUI items on the screen. This is done

via pull-down menus that list the available graphical objects. Every system is

slightly different (Mac differs from Windows and VB4 Differs from VB6) but,

generally speaking, left-clicking on an object allows you to describe attributes

like size and position. Right clicking allows you to write code. For example, if

the GUI item is a switch, left-clicking would allow the programmer to say how

big the switch was, how it was labeled and where onthe screen it is positioned.

Right-clicking on the switch would bring up a window that allows the

programmer to write the code that describes what happens when the user

clicks the switch.

Object Oriented

Object Oriented Programming (OOP) is a concept where the programmer

thinks of the program in "objects" (however abstract the objects may be) that

interact with each other. In OOP, all the code associated with that object is

in one place. Once again, VB forces this good programming practice. The GUI

items are the objects and all the code associated with the object are justa click

away. This natural way of enforcing good programming practices--- plus the

ease of programming in BASIC---is exactly why VB has found so many devoted

fans.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 10 of 124

Event Driven Programming

Event-driven programming is a programming paradigm in which the flow

of program execution is determined by events - for example a user action such

as a mouse click, key press, or a message from the operating system or

another program is known as the Event Driven Programming. VB

programming is also based on Events.

An event-driven application is designed to detect events as they occur,

and then deal with them using an appropriate event-handling procedure.

Modularization

It is considered good programming practice to modularize your programs.

Small modules where it is clearly indicated what comes into themodule and what

goes out makes a program easy to understand.

Debugging

Visual Basic offers two different options for code debugging:- Debugging

Managed Code Runtime Debugger The Debugging Managed Code individually

debugs C and C++ applications and Visual Basic Windows applications. The

Runtime Debugger helps to find and fix bugs in programsat runtime.

Data Access

By using data access features, we can create databases, scalable server- side

components for most databases, including Microsoft SQL Server and other

enterprise-level database.

Macros IDE

The Macros integrated development environment is similar in design and

function to the Visual Studio IDE. The Macros IDE includes a code editor, tool

windows, the properties windows and editors.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 11 of 124

STRUCTURE OF A VISUAL BASIC APPLICATION
To run Visual Basic program, select, Start -> Programs ->Microsoft

Visual Basic 6.0 as shown in

Fig.(2-1) Computer screen Fig.(2-2) New Project dialog.

The New Project dialog allows the programmer to choose what type of

Visual Basic program to create. Standard EXE, which is highlighted by default,

allows the programmer to create a standard executable. Each type listed in

Fig.(2-2) describes a group of related files called a Project.

Project (VBP)

Project is a program designed to user application that may be simple

(like calculator program) or complex (like word program). The project types

listed in Fig.(2-3) are the “Visual” in Visual Basic, because they contain

predefined features for designing Windows programs. The project is a

collection of files that makes the user program. They may consist of form,

modules, active x controls. The new project dialog contains three tabs

• New: creating new project.

• Existing: opening an existing project.

• Recent: opening a project that has been previously loaded into the IDE.

Application (Project) is made up of:

1. Forms - Windows that you create for user interface

2. Controls - Graphical features drawn on forms to allow user

interaction (text boxes, labels, scroll bars, command buttons, etc.)

(Forms and Controls are objects.)

3. Properties - Every characteristic of a form or control is specified by a

property. Example properties include names, captions, size, color,

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 12 of 124

position, and contents. Visual Basic applies default properties. You

can change properties at design time or run time.

4. Methods - Built-in procedure that can be invoked to impart some

action to a particular object.

5. Event Procedures - Code related to some object. This is the code that

is executed when a certain event occurs.

6. General Procedures - Code not related to objects. This code must be

invoked by the application.

7. Modules - Collection of general procedures, variable declarations, and

constant definitions used by application.

Steps in Developing Application

There are three primary steps involved in building a Visual Basic

application:

1. Draw the user interface

2. Assign properties to controls

3. Attach code to controls

We’ll look at each step.

Drawing the User Interface and Setting Properties

 Visual Basic operates in three modes.

Design mode - used to build application

Run mode - used to run the application

Break mode - application halted and debugger is available

We focus here on the design mode.

Six windows appear when you start Visual Basic.

The Main Window consists of the title bar, menu bar, and toolbar. The title

bar indicates the project name, the current Visual Basic operating mode,

and the current form. The menu bar has drop-down menus from which you

control the operation of the Visual Basic environment. The toolbar has

buttons that provide shortcuts to some of the menu options. The main

window also shows the location of the current form relative to the upper left

corner of the screen (measured in twips) and the width and length of the

current form.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 13 of 124

TOOL BAR
Contains several icons that provide quick access to commonly used

features

Project1-Form/SDI (Form): window contains a form named Form1, which

is where the program’s Graphical User Interface (GUI) will be displayed. A GUI

is the visual portion of the program, this is where the user enters data (called

inputs) to the program and where the program displays its results (called

outputs). We refer to the Form1 window simply as “the form”. Formsare the

foundation for creating the interface of an application. You can use the forms

to add windows and dialog boxes to your application. You can alsouse them

as container for items that are not a visible part of theapplication’s

interface. For example, you might have a form in your application that serves

as a container for graphics that you plan to displayin other forms.

Toolbox Controls: Contains a collection of tools that are needed for project

design as shown in Fig.(2-4). To show the toolbox press View> toolbox icon.

The user can place the tool on form, and then work with the tool. To place

the tool on form: click on tool>draw tool to form > the tool appears on form

or double click on tool then the tool appears on form. Table summarizes the

toolbox controls.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 14 of 124

Fig.(2-4)

Control Description

Pointer Used to interact with controls on the form (resize them,

move them, etc.). The pointer is not a control

PictureBox A control that display images or print the result.

Label A control that displays uneditable text to the user.

TextBox A control for accepting user input. Textbox can also

display text.

Frame A control for grouping other controls.

CommandButton A control that represents a button. The user presses or

clicks to initiate an action.

CheckBox A control that provides the user with a toggle choice

(checked or unchecked)

OptionButton Option buttons are used in groups where only one at a

time can be true.

ListBox A control that provides a list of items.

ComboBox A control that provides a short list of items.

HscrollBar A horizontal scrollbar.

VscrollBar A vertical scrollbar.

Timer A control that performs a task at programmer specified

intervals. A timer is not visible to the user.

DrivelistBox A control accessing the system disk drivers.

DirlistBox A control accessing directories on a system

Filelistbox A control accessing file in a directory

Shape A control for drawing circles, rectangles, squares or

ellipse

Line A control for drawing line.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 15 of 124

Properties

name

Objective

Name Used to represent name

of object in code.

Caption Name appears on

object.

Back color Background color for

object.

Fore color Color of text written on

object.

Font Font style type and size

Visible The tool is visible or

invisible.

Enable The tool enable or

disable

Height Length of object

Width Width of object

Top Coordinates of top of

object on screen

Left Coordinates of left of

object on screen

Text Allows inputting and

editing text in object.

Image A control for displaying images. The images control

does not provide as many capabilities as a picturebox.

OLE A control for interacting with other window

applications.

PROPERTIES WINDOW:

The properties window displays the properties for a form or control.

Properties are attributes such as size, position, etc. like a form; each control

type has its own set of properties. Some properties, like width and height,

such as, are common to both forms and controls, while other properties are

unique to form or control. Controls often differ in the number and type of

properties. Properties are listed either alphabetically (by selecting the

alphabetic tab) or categorically (by selecting the categorized tab). The most

important properties of the objects in general are listed in the following table.

To show the properties window press View> properties window icon.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 16 of 124

PROJECT EXPLORER WINDOW: The window titled Project-Project1 is called

the Project Explorer and contains the project files. The project explorer

window’s tool bar contains three buttons, namely view code, viewobject and

toggle folders. When pressed, the view code button displays a window for writing

Visual Basic code. View object, when pressed, displays the form. Double-

clicking form1 (form1) also displays the form. The toggle folders button toggles

(i.e., alternately hides or shows) the forms folder. The forms folder contains a

listing of all forms in the current project. To show the Project Explorer

window press View> Project Explorer window icon

FORM LAYOUT WINDOW: The Form Layout window specifies a form’s

position on the screen at runtime. The Form Layout window consists of an

image representing the screen and the form’s relative position on the screen.

With the mouse pointer positioned over the form image, drag the form to a

new location.

As mentioned, the user interface is ‘drawn’ in the form window. There are

two ways to place controls on a form:

1. Double-click the tool in the toolbox and it is created with a default size on

the form. You can then move it or resize it.

2. Click the tool in the toolbox, then move the mouse pointer to the form

window. The cursor changes to a crosshair. Place the crosshair at the upper

left corner of where you want the control to be, press the left mouse

button and hold it down while dragging the cursor toward the lower right

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 17 of 124

corner. When you release the mouse button, the control is drawn.

· To move a control you have drawn, click the object in the form window

and drag it

to the new location. Release the mouse button.

· To resize a control, click the object so that it is select and sizing handles

appear.

Use these handles to resize the object.

Click here to move the object
Use

sizing handles

for resizing

VISUAL BASIC 6.0 - PROPERTIES, METHODS & EVENTS
All the controls in the ToolBox except the Pointer are objects in Visual

Basic. These objects have associated properties, methods and events.

Real world objects are loaded with properties. For example, a flower is

loaded certain color, shape and fragrance. Similarly, programming objects are

loaded with properties. A property is a named attribute of a programming

object. Properties define the characteristics of an object such as Size, Color

etc. or sometimes the way in which it behaves. For example, a TextBox accepts

properties such as Enabled, Font, MultiLine, Text, Visible, Width, etc.

 Enables property allows the TextBox to be enabled or disabled at run time

depending on the condition set to True or False.

 Font property sets a particular font in the TextBox.

 MultiLine property allows the TextBox to accept and display multiple lines

at run time.

 Text property of the TextBox control sets a particular text in the control.

 Visible property is used to hide the object at run time.

 Width property sets the TextBox to the desired width at design time.

The properties that are discussed above are design-time properties that

can be set at the design time by selecting the Properties Window. But certain

properties cannot be set at design time. For example, the CurrentX and

CurrentY properties of a Form cannot be set at the design time.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 18 of 124

METHODS
A method is an action that can be performed on objects. For example,

a cat is an object. Its properties might include long white hair, blue eyes, 3

pounds’ weight etc. A complete definition of cat must only encompass on its

looks, but should also include a complete itemization of its activities.

Therefore, a cat's methods might be move, jump, play, breath etc.

Similarly, in object-oriented programming, a method is a connected or

built-in procedure, a block of code that can be invoked to impart some action

on a particular object. A method requires an object to provide them with a

context. For example, the word Move has no meaning in Visual Basic,but the

statement,

Text1.Move 700, 400

performs a very precise action. The TextBox control has other

associated methods such as Refresh, SetFocus, etc.

 The Refresh method enforces a complete repaint of the control or a Form.

For example, Text1.Refresh refreshes the TextBox.

 The Setfocus method moves the focus on the control. For Example

Text1.SetFocus sets the focus to TextBox control Text1.

EVENTS

the event.

Programs need to do something in response to user actions and actions

initiated by the operating system. Such actions, which are externalto the

program itself (although they may be triggered by the program) are called

events.

Keyboard and Mouse are two most important input devices. When user

uses these devices, Visual Basic generates a set of events.

Types of Events

1. Keyboard Events

2. Mouse Events

3. Program Events

Keyboard Events

When user presses a key on the keyboard, Visual Basic generates a few

events. These events allow user to know which key is exactly pressed.Keyboard

events occur for the controls that can receive input (have focus).

The following are the keyboard events available in Visual Basic:

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 19 of 124

Event When does it occur?

KeyDown When user presses the key on keyboard.

KeyUp When user releases the key on keyboard.

KeyAscii When user presses and releases an ANSI key.

KeyDown and KeyUp events

Keydown event occurs when user has pressed a key from keyboard.

KeyUp event occurs when user releases a key that he has pressed earlier. That

means every KeyDown event is followed by a KeyUp event.

These events occur for all types of keys including special keys like F1 and

Home key. The following are parameters for these two events.

Parameter Meaning

KeyCode A key code is the code of the key pressed. Each key on the

keyboard has a code. You can use constants such as vbKeyF1 (the F1 key)to

know which key on the keyboard is actually pressed by user.Shift An

integer that corresponds to the state of the SHIFT, CTRL, and ALT keys at the

time of the event. Please see the section “Knowing status of control key” for

details on this.

KeyPress Event

Keypress event occurs when user presses and releases a key. This event

occurs only when user presses one of the ANSI keys such as alphabets, digits

etc. This event doesn’t occur when user presses arrow keys, function keys

etc.

Mouse Events

Mouse events occur when user presses and releases mouse buttons.

The following are the events related to mouse.

Event When does it occur?

Click When user presses and releases a mouse button.

Dblclick When user presses and releases and again presses and releases a

mouse button.

MouseDown When user presses a mouse button.

MouseUp When user releases a mouse button.

MouseMove When user moves mouse pointer.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 20 of 124

FORM/CONTAINER/SDI(SINGLE DOCUMENT INTERFACE)
Visual Basic Form is the container for all the controls that make up

the user interface. Every window you see in a running visual basic

application is a form, thus the terms form and window describe the same

entity. Visual Studio creates a default form for you when you create

a Windows Forms Application.

Every form will have title bar on which the form's caption is displayed and there

will be buttons to close, maximize and minimize the form shown below −

If you click the icon on the top left corner, it opens the control menu, which

contains the various commands to control the form like to move control from

one place to another place, to maximize or minimize the form or to close the

form.

Form Properties

Following table lists down various important properties related to a

form. These properties can be set or read during application execution. You

can refer to Microsoft documentation for a complete list of properties

associated with a Form control –

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 21 of 124

Sl.No Properties Descript
ion

1 AcceptButton The button that's automatically
activated when you press Enter, no
matter which control has the focus at the
time. Usuallythe OK button on a form is
set as AcceptButton for a form.

2 CancelButton The button that's automatically
activated when you hit the Esc key.
Usually, the Cancel button on a form is
set
as CancelButton for a form.

3 AutoScale This Boolean property determines
whether the controls you place on the
form are automatically scaled to the
height of the current font. The default
value of this property is True. This is a
property of the
form, but it affects the controls on the
form.

4 AutoScroll This Boolean property indicates
whether scroll bars will be automatically
attached to
the form if it is resized to a point that
not all its controls are visible.

5 AutoScrollMinSize This property lets you specify the
minimum size of the form, before the scroll
bars are
attached.

6 AutoScrollPosition The AutoScrollPosition is the number
of pixels by which the two scroll bars
were displaced from their initial
locations.

7 BackColor Sets the form background color.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 22 of 124

 8 BorderStyle The BorderStyle property determines the
style of the form's border and
theappearance of the form −

 None − Borderless window that
can't be resized.

 Sizable − This is default value and
will be used for resizable window
that's used for displaying regular
forms.

 Fixed3D − Window with a visible
border, "raised" relative to the main
area. In this case, windows can't be
resized.

 FixedDialog − A fixed window, used
to create dialog boxes.

 FixedSingle − A fixed window
with a single line border.

 FixedToolWindow − A fixed
window with a Close button only. It
looks like the toolbar displayed by
the drawing and imaging
applications.

 SizableToolWindow − Same as the
FixedToolWindow but resizable. In

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 23 of 124

 addition, its caption font is smaller
than the usual.

9 ControlBox By default, this property is True and you
can set it to False to hide the icon and
disable the Control menu.

10 Enabled If True, allows the form to respond to
mouse and keyboard events; if False,
disables form.

11 Font This property specify font type, style, size

12 HelpButton Determines whether a Help button should
be displayed in the caption box of the form.

13 Height This is the height of the Form in pixels.

14 MinimizeBox By default, this property is True and you can
set it to False to hide the Minimize button on
the title bar.

15 MaximizeBox By default, this property is True and you can
set it to False to hide the Maximize button on
the title bar.

16 MinimumSize This specifies the minimum height and
width of the window you can minimize.

17 MaximumSize This specifies the maximum height and width
of the window you maximize.

18 Name This is the actual name of the form.

19 StartPosition This property determines the initial position of
the form when it's first displayed. It will have
any of the following values −

 CenterParent − The form is centered in
the area of its parent form.

 CenterScreen − The form is centered on
the monitor.

 Manual − The location and size of the
form will determine its startingposition.

 WindowsDefaultBounds − The form is
positioned at the default location and
size determined by Windows.

 WindowsDefaultLocation − The formis
positioned at the Windows default
location and has the dimensions you've
set at design time.

20 Text The text, which will appear at the title bar of
the form.

21 Top, Left These two properties set or return the
coordinates of the form's top-left corner in
pixels.

22 TopMost This property is a True/False value that lets
you specify whether the form will remain on
top of all other forms in your application. Its
default property is False.

23 Width This is the width of the form in pixel.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 24 of 124

FORM METHODS
The following are some of the commonly used methods of the Form

class. You can refer to Microsoft documentation for a complete list of

methods associated with forms control −

Sl.No. Method Name & Description

1 Activate
Activates the form and gives it focus.

2 ActivateMdiChild
Activates the MDI child of a form.

3 AddOwnedForm
Adds an owned form to this form.

4 BringToFront
Brings the control to the front of the z-order.

5 CenterToParent
Centers the position of the form within the bounds of the parent
form.

6 CenterToScreen
Centers the form on the current screen.

7 Close
Closes the form.

8 Contains
Retrieves a value indicating whether the specified control is a
child of the control.

9 Focus
Sets input focus to the control.

10 Hide
Conceals the control from the user.

11 Refresh
Forces the control to invalidate its client area and immediately
redraw itself and any child controls.

12 Scale(SizeF)
Scales the control and all child controls by the specified scaling
factor.

13 ScaleControl
Scales the location, size, padding, and margin of a control.

14 ScaleCore
Performs scaling of the form.

15 Select
Activates the control.

16 SendToBack
Sends the control to the back of the z-order.

17 SetAutoScrollMargin
Sets the size of the auto-scroll margins.

18 SetDesktopBounds
Sets the bounds of the form in desktop coordinates.

19 SetDesktopLocation
Sets the location of the form in desktop coordinates.

20 SetDisplayRectLocation
Positions the display window to the specified value.

21 Show

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 25 of 124

 Displays the control to the user.

22 ShowDialog
Shows the form as a modal dialog box.

FORM EVENTS
Following table lists down various important events related to a form.

You can refer to Microsoft documentation for a complete list of events

associated with forms control −

Sl. No Event Description

1 Activated Occurs when the form is activated in code
or by the user.

2 Click Occurs when the form is clicked.
3 Closed Occurs before the form is closed.

5 DoubleClick Occurs when the form control is double-
clicked.

6 DragDrop Occurs when a drag-and-drop operation is
completed.

8 GotFocus Occurs when the form control receives
focus.

9 HelpButtonClicked Occurs when the Help button is clicked.

10 KeyDown Occurs when a key is pressed while
the form has focus.

11 KeyPress Occurs when a key is pressed while the
form has focus.

12 KeyUp Occurs when a key is released while the
form has focus.

13 Load Occurs before a form is displayed for
the first time.

14 LostFocus Occurs when the form loses focus.
15 MouseDown Occurs when the mouse pointer is over

the form and a mouse button is pressed.

16 MouseEnter Occurs when the mouse pointer enters
the form.

17 MouseHover Occurs when the mouse pointer rests
on the form.

19 MouseMove Occurs when the mouse pointer is moved
over the form.

20 MouseUp Occurs when the mouse pointer is over the
form and a mouse button is released.

22 Move Occurs when the form is moved.
23 Resize Occurs when the control is resized.
24 Scroll Occurs when the user or code scrolls

through the client area.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 26 of 124

UNIT II

VISULA BASIC PROGRAMMING & TOOLS
INTRODUCTION TO VISUAL PROGRAMMING

VB stands for Visual Basic, and is a High-Level Programming

Language. A programming language basically allows you to create

programs or applications, such as Microsoft Word. These can then be run on

a number of operating systems, depending on which language you choose.

Visual Basic is specifically for Windows 95 or above.

A High-Level programming language essentially means a language that

is (relatively) easy to learn, and the code you write is similar to English words. In

comparison, a Low-level language would mainly involves working with assembly

language (ie what the PC's own language). It would involve far more work

creating a program using a Low Level language, so nearlyeveryone uses High

Level programming languages now. Visual Basic, Java, C++, Pascal, and

nearly every other language are now high level languages.

Visual Basic has its roots in a language called BASIC, back in the days

of Amstrads, and when Bill Gates was running Microsoft from his garage.

(BASIC actually stands for Beginners All-Purpose Symbolic Instruction

Code if you really want to know!). Since then, Visual Basic has rapidly evolved,

and today, Visual Basic one of the most popular programming languages

around. Fortunately for you, it is also one of the easiest, and is ideal for

beginners.

VISUAL BASIC 6 (VB6) DATA TYPES, MODULES &

OPERATORS
Visual Basic uses building blocks such as Variables, Data Types,

Procedures, Functions and Control Structures in its programming

environment. This section concentrates on the programming fundamentals of

Visual Basic with the blocks specified.

MODULES

Code in Visual Basic is stored in the form of modules. The three kind

of modules are Form Modules, Standard Modules and Class Modules. A simple

application may contain a single Form, and the code resides in that Form

module itself. As the application grows, additional Forms are added and there

may be a common code to be executed in several Forms. To avoid the

duplication of code, a separate module containing a procedure is created that

implements the common code. This is a standard Module.

Class module (.CLS filename extension) are the foundation of the object

oriented programming in Visual Basic. New objects can be created by writing

code in class modules. Each module can contain:

https://www.developerfusion.com/t/java/
https://www.developerfusion.com/t/java/

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 27 of 124

Declarations: May include constant, type, variable and DLL procedure

declarations.

Procedures: A sub function, or property procedure that contain pieces of

code that can be executed as a unit.

These are the rules to follow when naming elements in VB - variables,

constants, controls, procedures, and so on:

 A name must begin with a letter.

 May be as much as 255 characters long (but don't forget that somebody

has to type the stuff!).

 Must not contain a space or an embedded period or type-declaration

characters used to specify a data type; these are ! # % $ & @

 Must not be a reserved word (that is part of the code, like Option, for

example)\]]]]],

 The dash, although legal, should be avoided because it may be confused

with the minus sign. Instead of First-name use First_name or FirstName.

DATA TYPES IN VISUAL BASIC

By default, Visual Basic variables are of variant data types. The variant

data type can store numeric, date/time or string data. When a variable is

declared, a data type is supplied for it that determines the kind of data they

can store. The fundamental data types in Visual Basic including variant are

integer, long, single, double, string, currency, byte and boolean. Visual Basic

supports a vast array of data types. Each data type has limits to the kind of

information and the minimum and maximum values it can hold. In addition,

some types can interchange with some other types. A list of Visual Basic's

simple data types above e given below.

1. Numeric

Byte Store integer values in the range of 0 - 255

Integer Store integer values in the range of (-32,768) - (+ 32,767)

Long Store integer values in the range of (- 2,147,483,468) - (+

2,147,483,468)

Single Store floating point value in the range of (-3.4x10-38) -

(+ 3.4x1038)

Double Store large floating value which exceeding the single

data type value

Currency store monetary values. It supports 4 digits to the right of

decimal point and 15 digits to the left

2. String

Use to store alphanumeric values. A variable length string can store

approximately 4 billion characters

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 28 of 124

3. Date

Use to store date and time values. A variable declared as date type can

store both date and time values and it can store date values 01/01/0100 up

to 12/31/9999

4. Boolean

Boolean data types hold either a true or false value. These are not stored

as numeric values and cannot be used as such. Values are internally stored as -1

(True) and 0 (False) and any non-zero value is considered as true.

5. Variant

Stores any type of data and is the default Visual Basic data type. In Visual Basic

if we declare a variable without any data type by default the data type is assigned as

default. A variant is a data type that knows how to be any data type. If you declare a

variable to be of type variant, it can be an Integer, Double, String...whatever.

Variables have a definite use in advanced programming. If you are a beginning

programmer, however, you shouldn't use variants to avoid the labor of learning to

use the proper data type for the proper situation.

Data type
Storage

size
Range

Byte 1 byte 0 to 255

Boolean 2 bytes True or False

Integer 2 bytes -32,768 to 32,767

Long (long

integer)
4 bytes -2,147,483,648 to 2,147,483,647

Single (single-

precision

floating-point)

4 bytes

-3.402823E38 to -1.401298E-45 for negative

values; 1.401298E-45 to 3.402823E38 for

positive values

Double (double-

precision

floating-point)

8 bytes

-1.79769313486232E308 to -

4.94065645841247E-324 for negative values;

4.94065645841247E-324 to

1.79769313486232E308 for positive values

Currency

(scaled integer)
8 bytes

-922,337,203,685,477.5808 to

922,337,203,685,477.5807

Decimal

14 bytes

+/-79,228,162,514,264,337,593,543,950,335

with no decimal point; +/-

7.9228162514264337593543950335 with 28

places to the right of the decimal; smallest

non-zero number is +/-

0.0000000000000000000000000001

Date 8 bytes January 1, 100 to December 31, 9999

Object 4 bytes Any Object reference

String 10 bytes + 0 to approximately 2 billion

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 29 of 124

(variable-

length)

string

length

String (fixed-

length)

Length of

string
1 to approximately 65,400

Variant (with

numbers)
16 bytes

Any numeric value up to the range of a

Double

Variant (with

characters)

22 bytes +

string

length

Same range as for variable-length String

User-defined

(using Type)

Number

required

by

elements

The range of each element is the same as the

range of its data type.

In all probability, in 90% of your applications you will use at most six types:

String, Integer, Long, Single, Boolean and Date. The Variant type is often

used automatically when type is not important. A Variant-type field can

contain text or numbers, depending on the data that is actually entered. It is

flexible but it is not very efficient in terms of storage.

VARIABLES

Variables are the memory locations which are used to store values

temporarily. A defined naming strategy has to be followed while naming a

variable. A variable name must begin with an alphabet letter and should not

exceed 255 characters. It must be unique within the same scope. It should not

contain any special character like %, &, !, #, @ or $.

The following are the rules when naming the variables in Visual Basic

 It must be less than 255 characters

 No spacing is allowed

 It must not begin with a number

 Period is not permitted

 Cannot use exclamation mark (!), or the characters @, &, $, #

 Cannot repeat names within the same level of scope.

Examples of valid and invalid variable names are displayed

Examples of Valid and Invalid Variable Names

Valid Name Invalid Name

My_Car My.Car

this year 1NewBoy

Long_Name_Can_beUSE He&HisFather *& is not acceptable

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 30 of 124

Dim VariableNamen As DataType

Dim VariableName1 As DataType1, VariableName2 As DataType2,

VariableName3 As DataType3

There are many ways of declaring variables in Visual Basic. Depending on

where the variables are declared and how they are declared, we can

determine how they can be used by our application. The different ways of

declaring variables in Visual Basic are listed below and elucidated in this

section.

 Explicit Declaration

 Using Option Explicit statement

 Scope of Variables

EXPLICIT DECLARATION
Declaring a variable tells Visual Basic to reserve space in memory. It

is not must that a variable should be declared before using it. Automatically

whenever Visual Basic encounters a new variable, it assigns the default

variable type and value. This is called implicit declaration. Though this type

of declaration is easier for the user, to have more control over the variables,

it is advisable to declare them explicitly. The variables are declared with a Dim

statement to name the variable and its type. The As type clause in the Dim

statement allows to define the data type or object type of the variable. This is

called explicit declaration.

Syntax

For example,

Dim strName As String

Dim intCounter As Integer

If you want to declare more variables, you can declare them in

separate lines or you may also combine more in one line , separating each

variable with a comma, as follows:

For example,

Dim password As String, yourName As String, firstnum As Integer

USING OPTION EXPLICIT STATEMENT
It may be convenient to declare variables implicitly, but it can lead to errors

that may not be recognized at run time. Say, for example a variableby name

intcount is used implicitly and is assigned to a value. In the next step, this field

is incremented by 1 by the following statement

Intcount = Intcount + 1

This calculation will result in intcount yielding a value of 1 as intcount

would have been initialized to zero. This is because the intcount variable has

https://www.freetutes.com/learn-vb6/lesson2.1.html#explicit-declaration
https://www.freetutes.com/learn-vb6/lesson2.1.html#using-option-explicit-statement
https://www.freetutes.com/learn-vb6/lesson2.1.html#scope-of-variables

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 31 of 124

been mistyped as intcount in the right hand side of the second variable. But

Visual Basic does not see this as a mistake and considers it to be new variable

and therefore gives a wrong result.

In Visual Basic, to prevent errors of this nature, we can declare a

variable by adding the following statement to the general declaration section

of the Form.

OPTION EXPLICIT

This forces the user to declare all the variables. The Option Explicit

statement checks in the module for usage of any undeclared variables and

reports an error to the user. The user can thus rectify the error on seeing

this error message.

The Option Explicit statement can be explicitly placed in the general

declaration section of each module using the following steps.

 Click Options item in the Tools menu

 Click the Editor tab in the Options dialog box

 Check Require Variable Declaration option and then click the OK button

SCOPE OF VARIABLES

A variable is scoped to a procedure-level (local) or module-level variable

depending on how it is declared. The scope of a variable, procedure or object

determines which part of the code in our application are aware of the

variable's existence. A variable is declared in general declaration sectionof e

Form, and hence is available to all the procedures. Local variables are recognized

only in the procedure in which they are declared. They can be declared with Dim

and Static keywords. If we want a variable to be available to all of the

procedures within the same module, or to all the procedures inan application,

a variable is declared with broader scope.

LOCAL VARIABLES

A local variable is one that is declared inside a procedure. This variable

is only available to the code inside the procedure and can be declared using

the Dim statements as given below.

Dim sum As Integer

The local variables exist as long as the procedure in which they are

declared, is executing. Once a procedure is executed, the values of its local

variables are lost and the memory used by these variables is freed and can be

reclaimed. Variables that are declared with keyword Dim exist only as long as

the procedure is being executed.

STATIC VARIABLES

Static variables are not reinitialized each time Visual Invokes a procedure

and therefore retains or preserves value even when a procedure ends. In case we

need to keep track of the number of times a command

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 32 of 124

button in an application is clicked, a static counter variable has to be declared.

These static variables are also ideal for making controls alternatelyvisible or

invisible. A static variable is declared as given below.

Static intPermanent As Integer

Variables have a lifetime in addition to scope. The values in a module-

level and public variables are preserved for the lifetime of an application

whereas local variables declared with Dim exist only while the procedure in

which they are declared is still being executed. The value of a local variable

can be preserved using the Static keyword. The following procedure

calculates the running total by adding new values to the previous values

stored in the static variable value.

Function RunningTotal ()

Static Accumulate

Accumulate = Accumulate + num

RunningTotal = Accumulate

End Function

If the variable Accumulate was declared with Dim instead of static, the

previously accumulated values would not be preserved across calls to the

procedure, and the procedure would return the same value with which it was

called. To make all variables in a procedure static, the Static keyword is placed

at the beginning of the procedure heading as given in the belowstatement.

Static Function RunningTotal ()

Example

The following is an example of an event procedure for a

CommandButton that counts and displays the number of clicks made.

Private Sub Command1_Click ()

Static Counter As Integer

Counter = Counter + 1

Print Counter

End Sub

The first time we click the CommandButton, the Counter starts with

its default value of zero. Visual Basic then adds 1 to it and prints the result.

MODULE LEVEL VARIABLES

A module level variable is available to all the procedures in the module.

They are declared using the Public or the Private keyword. If you declare a

variable using a Private or a Dim statement in the declaration section of a

module—a standard BAS module, a form module, a class module, and so on—

you're creating a private module-level variable. Such variables are visible only

from within the module they belong to and can't be accessed from the outside. In

general, these variables are useful for sharingdata among procedures in the

same module:

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 33 of 124

' In the declarative section of any module

Private LoginTime As Date ' A private module-level variable Dim

LoginPassword As String ' Another private module-level variable

You can also use the Public attribute for module-level variables, for all

module types except BAS modules. (Public variables in BAS modules are global

variables.) In this case, you're creating a strange beast: a Public module-level

variable that can be accessed by all procedures in the moduleto share data

and that also can be accessed from outside the module. In thiscase, however,

it's more appropriate to describe such a variable as a property:

' In the declarative section of Form1 module

Public CustomerName As String ' A Public property

You can access a module property as a regular variable from inside

the module and as a custom property from the outside:

' From outside Form1 module...

Form1.CustomerName = "John Smith"

The lifetime of a module-level variable coincides with the lifetime of the

module itself. Private variables in standard BAS modules live for the entire life

of the application, even if they can be accessed only while VisualBasic is

executing code in that module. Variables in form and class modulesexist only

when that module is loaded in memory. In other words, while aform is active

(but not necessarily visible to the user) all its variables take some memory, and

this memory is released only when the form is completely unloaded from

memory. The next time the form is re-created, Visual Basic reallocates memory

for all variables and resets them to their default values (0 for numeric values, ""

for strings, Nothing for objectvariables).

PUBLIC VS LOCAL VARIABLES

A variable can have the same name and different scope. For example,

we can have a public variable named R and within a procedure we can declare

a local variable R. References to the name R within the procedure would access

the local variable and references to R outside the procedure would access the

public variable.

CONSTANTS

Constant also store values, but as the name implies, those values

remains constant throughout the execution of an application. Using

constants can make your code more readable by providing meaningful names

instead of numbers. There are a number of built –in constants in Visual Basic.

There are two sources for constants:

System-defined constants are provided by applications and controls.

Visual Basic constants are listed in the Visual Basic (VB).

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 34 of 124

Const constant_name = value

User-defined constants are declared using the Const statement. It is a

space in memory filled with fixed value that will not be changed.

Syntax

Here const is a keyword
Constant_name is name of the constant

Value is constant value

For example:

Const X=3.14156 Constant for procedure

Private Const X=3.14156 Constant for form and all procedure

Public Const X=3.14156 Constant for all forms

A Const statement's scope is the same as that of a variable declared in the

same location. You can specify scope in any of the following ways:

• To create a constant that exists only within a procedure, declare it within

that procedure.

• To create a constant available to all procedures within a class, but not to

any code outside that module, declare it in the declarations section of the

class.

• To create a constant that is available to all members of an assembly, but

not to outside clients of the assembly, declare it using the Friend keyword in

the declarations section of the class.

• To create a constant available throughout the application, declare it using

the Public keyword in the declarations section the class

OPERATORS IN VISUAL BASIC

An operator is a special symbol which indicates a certain process is carried

out. Operators in programming languages are taken from mathematics.

Programmers work with data. The operators are used to process data.

ARITHMETICAL OPERATORS

Arithmetic operators are used to perform many of the familiar

arithmetic operations that involve the calculation of numeric values

represented by literals, variables, other expressions, function and property

calls, and constants. Also classified with arithmetic operators are the bit- shift

operators, which act at the level of the individual bits of the operands and shift

their bit patterns to the left or right.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 35 of 124

Operators Description Example Result

+ Add 5+5 10

- Subtract 10-5 5

/ Divide 25/5 5

\ Integer Division 20\3 6

* Multiply 5*4 20

^ Exponent (power of) 3^3 27

Mod Remainder of division 20 Mod 6 2

& String concatenation "George"&" "&"Bush" "George Bush"

COMPARISON/CONDITIONAL/RELATIONAL OPERATORS

Comparison operators compare two expressions and return

a Boolean value that represents the relationship of their values. There are

operators for comparing numeric values, operators for comparing strings,

and operators for comparing objects. Visual Basic compares numeric values

using six numeric comparison operators. Each operator takes as operands

two expressions that evaluate to numeric values. The following table lists the

operators and shows examples of each.

Operators Description Example Result

> Greater than 10>8 True

< Less than 10<8 False

>= Greater than or

equal to

20>=10 True

<= Less than or

equal to

10<=20 True

<> Not Equal to 5<>4 True

= Equal to 5=7 False

*Note: You can also compare strings with the above operators. However, there

are certain rules to follows: Upper case letters are less than lowercase letters,

"A"<"B"<"C"<"D". <"Z" and number are less than letters.

LOGICAL OPERATORS

In addition to conditional operators, there are a few logical operators

which offer added power to the VB programs. Logical operators compare

Boolean expressions and return a Boolean result.

The And, Or, AndAlso, OrElse, and Xor operators are binary because they

take two operands, while the Notoperator is unary because it takes a single

operand. Some of these operators can also perform bitwise logical operations

on integral values.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 36 of 124

Operators Description

OR Operation will be true if either of the operands is

true

AND Operation will be true only if both the operands are

true

Xor One side or other must be true but not both

Not Negates true

DATA TYPE CONVERSION
Visual Basic functions either to convert a string into an integer or vice versa

and many more conversion functions. A complete listing of all the conversion

functions offered by Visual Basic is elucidated below.

Conversion To Function Meaning

Boolean Cbool
The function Cbool converts any data type to
Boolean 0 or 1.

Byte Cbyte
The function Cbyte converts any data type to
Byte.

Currency Ccur
The function Ccur converts any data type to
currency.

Date Cdate
The function Cdate converts any data type to
date.

Decimals Cdec
The function Cdec converts any data type to
decimal.

Double

CDbl

The function CDbl converts, integer, long
integer, and single- precision numbers to
double-precision numbers. If x is any
number, then the value of CDbl(x) is the
doubleprecision number determined by x.

Integer

Cint

The function CInt converts long integer,
single-precision, and double precision
numbers to integer numbers. If x is any
number, the value of CInt(x) is the (possibly
rounded) integer constant that x determines.

Long

CLng

The function CLng converts integer, single
precision and double-precision numbers to
long integer numbers. If x is any number, the
value of CLng(x) is the (possibly rounded) long
integer that x determines.

Single

CSng

The function CSng converts integer, long
integer, and double-precision numbers to
single-precision numbers. If x is any number,
the value of CSng(x) is the singleprecision
number that x determines.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 37 of 124

If <condition> Then

statement

End If

If <condition > Then

statements

Else

statements

End If

String

CStr

The function CStr converts integer, long
integer, single-precision, double-precision,
and variant numbers to strings. If x is any
number, the value of CStr(x) is the string
determined by x. unlike the Str function, CStr
does not place a space in front of positive
numbers.[variant]

Value val
The CVal function is used to convert string to
double-precision numbers.

CONTROL STRUCTURES IN VISUAL BASIC 6.0
Control Statements are used to control the flow of program's

execution. Visual Basic supports control structures such as if... Then, if...Then

...Else, Select...Case, and Loop structures such as Do While...Loop,

While...Wend, For...Next etc method.

SELECTION OR BRANCHING OR DECISION MAKING

STATEMENTS
Decision making process is an important part of programming because

it can help to solve practical problems intelligently so that it can provide useful

output or feedback to the user.

If...Then selection structure
The If...Then selection structure performs an indicated action only

when the condition is True; otherwise the action is skipped.

Syntax of the If...Then selection

e.g.: If average>75 Then

txtGrade.Text = "A"

End If

If...Then...Else selection structure
The If...Then...Else selection structure allows the programmer to

specify that a different action is to be performed when the condition is True

than when the condition is False.

Syntax of the If...Then...Else selection

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 38 of 124

If < condition 1 > Then

statements

ElseIf < condition 2 > Then

statements

ElseIf < condition 3 > Then

statements

Else

Statements

End If

e.g.: If average>50 Then

txtGrade.Text = "Pass"

Else

txtGrade.Text = "Fail"

End If

Nested If...Then...Else selection structure
Nested If...Then...Else selection structures test for multiple cases by

placing If...Then...Else selection structures inside If...Then...Else structures.

Syntax of the Nested If...Then...Else selection structure

You can use Nested If either of the methods as shown above

Method 1

Method 2

e.g.: Assume you have to find the grade using nested if and display in a text

box

If average > 75 Then

txtGrade.Text = "A"

ElseIf average > 65 Then

If < condition 1 > Then

statements

Else

If < condition 2 > Then

statements

Else

If < condition 3 > Then

statements

Else

Statements

End If

End If

End If

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 39 of 124

Select Case expression

Case value1

Statements

Case value2

Statements

.

.

.

.

Case valuen

Statements

Case else

statements

End Select

txtGrade.Text = "B"

ElseIf average > 55 Then

txtGrade.text = "C"

ElseIf average > 45 Then

txtGrade.Text = "S"

Else

txtGrade.Text = "F"

End If

Select...Case selection structure
The Select Case structure compares one expression to different values.

The advantage of the Select Case statement over multiple If...Then...Else

statements is that it makes the code easier to read and maintain.

The Select Case structure tests a single expression, which is evaluated once

at the top of the structure. The result of the test is then compared with several

values, and if it matches one of them, the corresponding block of statements is

executed. Here’s the syntax of the Select Case statement:

The following program block illustrate the working of Select...Case.

Syntax of the Select...Case selection structure

e.g.: Assume you have to find the grade using select...case and display in

the text box

Dim average as Integer

average = txtAverage.Text

Select Case average

Case 100 To 75

txtGrade.Text ="A"

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 40 of 124

Do While condition

Block of one or more VB statements

Loop

Case 74 To 65

txtGrade.Text ="B"

Case 64 To 55

txtGrade.Text ="C"

Case 54 To 45

txtGrade.Text ="S"

Case 44 To 0

txtGrade.Text ="F"

Case Else

MsgBox "Invalid average marks"

End Select

LOOPING STATEMENTS
Visual Basic procedure that allows the program to run repeatedly

until a condition or a set of conditions is met. This is procedure is known as

looping. Looping is a very useful feature of Visual Basic because it makes

repetitive works easier. There are three kinds of loops in Visual Basic,

the Do...Loop ,the For.......Next loop and the While.....Wend Loop.

Loop statements allow you to execute one or more lines of code

repetitively. Many tasks consist of trivial operations that must be repeated over

and over again, and looping structures are an important part of any programming

language.

Visual Basic supports the following loop statements:

• Do...Loop

• For...Next

• Existing Loop

• While...Wend

Do...Loop

The Do...Loop executes a block of statements for as long as a condition

is True. Visual Basic evaluates an expression, and if it’s True, the statements are

executed. If the expression is False, the program continues and the statement

following the loop is executed.

The Do Loop statements have four different forms, as shown below:

a) The Do While...Loop is used to execute statements until a certain

condition is met.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 41 of 124

Do

Block of one or more VB statements

Loop While condition

Do Until condition

Block of one or more VB statements

Loop

Example

The following Do Loop counts from 1 to 100.

Dim number As Integer

number = 1

Do While number <= 100

number = number + 1

Loop

A variable number is initialized to 1 and then the Do While Loopstarts.

First, the condition is tested; if condition is True, then the statements are

executed. When it gets to the Loop it goes back to the Do and tests condition

again. If condition is False on the first pass, the statements are never executed.

Example

Dim number As Long

number = 0

c) Unlike the Do While...Loop repetition structures, the Do Until...

Loop structure tests a condition for falsity. Statements in the body of a Do

Until...Loop are executed repeatedly as long as the loop-continuation test

evaluates to False.

Example

An example for Do Until...Loop statement. The coding is typed inside

the click event of the command button

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 42 of 124

Do

Block of one or more VB statements

Loop Until condition

For counter = Start To End Step [Increment]

One or more VB statements

Next [counter]

Dim number As Long

number=0

Do Until number > 1000

number = number + 1

Print number

Loop

Numbers between 1 to 1000 will be displayed on the form as soon as you

click on the command button.

d)

Example

Do

counter=counter+1

Loop until counter>1000

For. .. Next Loop

The syntax is:

The arguments counter, start, end, and increment are all numeric.The

increment argument can be either positive or negative. If increment is

positive, start must be less than or equal to end or the statements in the

loop will not execute. If increment is negative, start must be greater than or

equal to end for the body of the loop to execute. If steps aren’t set, then

increment defaults to 1.

In executing the For loop, visual basic:

1. Sets counter equal to start.

2. Tests to see if counter is greater than end. If so, visual basic exits the loop

(if increment is negative, visual basic tests to see if counter is less than end).

3. Executes the statements.

4. Increments counter by 1 or by increment, if it’s specified.

5. Repeats steps 2 through 4.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 43 of 124

Do While condition

Statements

Exit do

Statements

Loop

For counter= start To end step (increment)

Statements

Exit for

Statement

Next counter

While condition

Statements

Wend

For Example:

1) For I=0 To 10 step 5

Statements

Next I

2) For counter = 100 To 0 Step -5

Statements

Next counter

EXISTING LOOP

The exit statement allows you to exit directly from For Loop and DoLoop,

Exit For can appear as many times as needed inside a For loop, andExit Do

can appear as many times as needed inside a Do loop (the Exit Do statement

works with all version of the Do Loop syntax). Sometimes the user might want

to get out from the loop before the whole repetitive process isexecuted; the

command to use is Exit For To exit a For.....Next Loop or ExitDo To exit a

Do… Loop, and you can place the Exit For or Exit Do statement within the loop;

and it is normally used together with the If. Then. statement.

Exit For

The syntax:

Exit Do

The syntax:

While. .. Wend Statement
A While...Wend statement behaves like the Do

While. Loop statement.

Syntax:

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 44 of 124

Example

The following While...Wend counts from 1 to 100

Dim number As Integer

number = 1

While number <=100

number = number + 1

Wend

VISUAL BASIC FUNCTIONS:
Visual Basic offers a rich assortment of built-in functions. The

numeric and string variables are the most common used variables in

programming. Therefore, Visual Basic provides the user with many

functions to be used with a variable to perform certain operations or type

conversion. Detailed description of the function in general will be discussed

in the following functions section. The most common functions for (numeric

or string) variable X are stated in the following table.

Function Description

Numerical/Mathematical Function

X= RND Create random number value between 0 and 1

Y=ABS(X) Absolute of X, |X|

Y=SQR(X) Square root of X , √𝑋𝑋

Y=SGN(X) -(-1 or 0 or 1) for (X<0 or X=0 or X>0) Y=EXP(X) 𝒆𝒆𝑿𝑿

Y=LOG(X) Natural logarithms, ln𝑋𝑋 Y=LOG(X) / LOG(10) log𝑋𝑋

Y=sin (𝑋𝑋)

Y=cos (𝑋𝑋)

Y=tan (𝑋𝑋)

Trigonometric functions

Y=INT(X) Integer of X Y= FIX(X) Take the integer part

Y=ATN(X) Is arc= tan−1(𝑋𝑋) (Where X angle in radian).

Function of String Variable

Y=Len(x) Number of characters of Variable

Y=UCase (x) Change to capital letters

Y=LCase (x) Change to small letters

Y=Left (X,L) Take L character from left

Y=Right (X,L) Take L character from right

Y=Mid (X,S,L) Take only characters between S and R

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 45 of 124

PROCEDURES IN VISUAL BASIC 6
Visual Basic offers different types of procedures to execute small

sections of coding in applications. The various procedures are elucidated in

details in this section. Visual Basic programs can be broken into smaller

logical components called Procedures. Procedures are useful for condensing

repeated operations such as the frequently used calculations, text and control

manipulation etc. The benefits of using procedures in programming are:

It is easier to debug a program a program with procedures, which breaks a

program into discrete logical limits.

Procedures used in one program can act as building blocks for other

programs with slight modifications.

A Procedure can be Sub, Function or Property Procedure.

Sub Procedures

A sub procedure can be placed in standard, class and form modules.

Each time the procedure is called, the statements between Sub and End

Sub are executed. The syntax for a sub procedure is as follows:

[Private | Public] [Static] Sub Procedurename [(arglist)]

[statements]

End Sub

arglist is a list of argument names separated by commas. Each argument

acts like a variable in the procedure. There are two types of Sub Procedures

namely general procedures and event procedures.

Event Procedures
An event procedure is a procedure block that contains the control's

actual name, an underscore (_), and the event name. The following syntax

represents the event procedure for a Form_Load event.

Private Sub Form_Load()

....statement block..

End Sub

Event Procedures acquire the declarations as Private by default.

General Procedures

A general procedure is declared when several event procedures perform

the same actions. It is a good programming practice to write common

statements in a separate procedure (general procedure) and then call them in

the event procedure.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 46 of 124

In order to add General procedure:

 The Code window is opened for the module to which the procedure is

to be added.

 The Add Procedure option is chosen from the Tools menu, which opens

an Add Procedure dialog box as shown in the figure given below.

 The name of the procedure is typed in the Name textbox

 Under Type, Sub is selected to create a Sub procedure, Function to create

a Function procedure or Property to create a Property procedure.

 Under Scope, Public is selected to create a procedure that can be invoked

outside the module, or Private to create a procedure that can be invoked only

from within the module.

The following function procedure calculates the third side or

hypotenuse of a right triangle, where A and B are the other two sides. It

takes two arguments A and B (of data type Double) and finally returns the

results.

Function Hypotenuse (A As Double, B As Double) As Double

Hypotenuse = sqr (A^2 + B^2)

End Function

The above function procedure is written in the general declarations section of

the Code window. A function can also be written by selecting the Add

Procedure dialog box from the Tools menu and by choosing the required scope

and type.

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 47 of 124

Property Procedures
A property procedure is used to create and manipulate custom properties. It

is used to create read only properties for Forms, Standard modules and Class

modules.Visual Basic provides three kind of property procedures-Property Let

procedure that sets the value of a property, Property Get procedure that returns the

value of a property, and Property Set procedure that sets the references to an object.

ARRAYS
An array is a variable with a single name that represents many different items.

When we work with a single item, we only need to use one variable. However,if we

have a list of items which are of similar type to deal with, we need to declarean

array of variables instead of using a variable for each item

For example, if we need to enter one hundred names, it is difficult to declare 100

different names. Besides, if we want to process those data that involves decision making,

we might have to use hundreds of if...then statements, this is a waste of time and

efforts.So, instead of declaring one hundred different variables, we needto declare

only one array. We differentiate each item in the array by using subscript, the index

value of each item, for example, name(1), name(2), name(3)

.......etc. , makes declaring variables more streamline.

The Individual elements of an array are identified using an index. Arrays have

upper and lower bounds and the elements have to lie within those bounds. Each

index number in an array is allocated individual memory space and therefore users

must evade declaring arrays of larger size than required. We can declare an array of

any of the basic data types including variant, user-defined types and object variables.

The individual elements of an array are all of the same data type.

Declaring arrays
Arrays occupy space in memory. The programmer specifies the array

type and the number of elements required by the array so that the compiler

may reserve the appropriate amount of memory. Arrays may be declared as

Public (in a code module), module or local. Module arrays are declared in the

general declarations using keyword Dim or Private. Local arrays are declared

in a procedure using Dim or Static. Array must be declared explicitly with

keyword "As".

There are two types of arrays in Visual Basic namely:

Fixed-size/static array : The size of array always remains the same-size

doesn't change during the program execution.

Dynamic array : The size of the array can be changed at the run time- size

changes during the program execution.

https://www.freetutes.com/learn-vb6/lesson6.1.html

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 48 of 124

Dim arrayName(subscript) as dataType

Declaring one dimensional Array

The general syntax to declare a one dimensional array is as follow:

where subs indicate the last subscript in the array.

When you declare an array, you need to be aware of the number of elements

created by the Dim keyword. In the Dim arrayName(subscript) statement,

subscript actually is a constant that defines the maximum number of elements

allowed. When an upper bound is specified in the declaration, a Fixed-array is

created. The upper limit should always be within the range of long data type.

EXAMPLE

Dim numbers(5) As Integer

In the above illustration, numbers is the name of the array, and the

number 6 included in the parentheses is the upper limit of the array. The

above declaration creates an array with 6 elements, with index numbers

running from 0 to 5.

The second way is to specify the lower bound and the upper bound of the

subscript using To keyword. The syntax is

If we want to specify the lower limit, then the parentheses should

include both the lower and upper limit along with the To keyword. An

example for this is given below.

EXAMPLE

Dim numbers (1 To 6) As Integer

In the above statement, an array of 10 elements is declared but with

indexes running from 1 to 6.

A public array can be declared using the keyword Public instead of Dim as

shown below.

Public numbers(5) As Integer

Dim arrayName(lowerbound To upperbound) As dataType

Visual Basic 6.0

From the desk of Amarjeet K, Asst. Professor, Dept. of CS Page 49 of 124

Dim myArray()

Multidimensional Arrays
Arrays can have multiple dimensions. A common use of

multidimensional arrays is to represent tables of values consisting of

information arranged in rows and columns. To identify a particular table

element, we must specify two indexes: The first (by convention) identifies the

element's row and the second (by convention) identifies the element's

column.

Tables or arrays that require two indexes to identify a particular

element are called two dimensional arrays. Note that multidimensional

arrays can have more than two dimensions. Visual Basic supports at least

60 array dimensions, but most people will need to use more than two or three

dimensional-arrays.

Declaring two dimensional Array
The general syntax to declare a two dimensional array is as follow:

The following statement declares a two-dimensional array 50 by 50 array

within a procedure.

Example

Dim AvgMarks (50, 50)

It is also possible to define the lower limits for one or both the

dimensions as for fixed size arrays. An example for this is given here.

Dim Marks (101 To 200, 1 To 100)

An example for three dimensional-array with defined lower limits is given

below.

Dim Details(101 To 200, 1 To 100, 1 To 100)

DYNAMIC ARRAY

So far we have learned how to define the number of elements in anarray

during design time. This type of array is known as static array. However, the

problem is sometimes we might not know how many data items we need to

store during run time. In this case, we need to use dynamic array where the

number of elements will be decided during run time. In VB6, the dynamic array

can be resized when the program isexecuting.

The first step in declaring a dynamic array is by using the Dim statement

without specifying the dimenson list, as follows:

Dim ArrayName(Sub1,Sub2) as dataType

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 50 of 124

ReDim myArray(1 to n) when n is decided during run time

Then at run time we can specify the actual array size using the ReDim

statement, as follows:

You can also declare a two dimensional array using ReDim statement, as

follows:

ReDim myArray(1 to n, 1 to m) when m and n are known during run

time

DATE AND TIME FUNCTIONS

The system's current date and time can be retrieved using the Now,

Date and Time functions in Visual Basic. The Now function retrieves the

date and time, while Date function retrieves only date and Time function

retrieves only the time.

To display both the date and time together a message box is displayed

use the statement given below.

MsgBox "The current date and time of the system is" & Now

Here & is used as a concatenation operator to concentrate the string

and the Now function. Selective portions of the date and time value can be

extracted using the below listed functions.

Function Extracted Portion

Year () Year (Now)

Month () Month (Now)

Day () Day (Now)

WeekDay () WeekDay (Now)

Hour () Hour (Now)

Minute () Minute (Now)

Second () Second (Now)

The calculation and conversion functions related to date and time functions

are listed below.

 Function Description

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 51 of 124

DateDiff (interval, date1, date2[, firstdayofweek[, firstweekofyear]])

Format (expression[, format[, firstdayofweek[, firstweekofyear]]])

DateAdd ()
Returns a date to which a specific interval has

been added

DateDiff ()
Returns a Long data type value specifying the

interval between the two values

DatePart ()
Returns an Integer containing the specified part

of a given date

DateValue () Converts a string to a Date

TimeValue () Converts a string to a time

DateSerial () Returns a date for specified year, month and day

DateDiff Function

The DateDiff function returns the intervals between two dates in terms of

years, months or days. The syntax for this is given below.

Format Function

The format function accepts a numeric value and converts it to a string in the

format specified by the format argument. The syntax for this is given below.

The Format function syntax has these parts:

Part Description

Expression Required any valid expression

Format Optional. A valid named or user-defined format

expression.

Firstdayofweek Optional. A contant that specifies the first day

of the week.

Firstweekofyear Optional. A contant that specifies the first

week of the year

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 52 of 124

Unit IV

CONTROLS

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 53 of 124

VB CONTROLS
Visual Basic controls and the ways of creating and implementing the.

It also helps us to understand the concept of Control Arrays. Controls are used

to receive user input and display output and has its own set of properties,

methods and events. Let us discuss few of these controls in this lesson.

Creating and Using Controls

A control is an object that can be drawn on a Form object to enable or

enhance user interaction with an application. Controls have properties that

define aspects their appearance, such as position, size and color, and aspects

of their behavior, such as their response to the user input. They can respond

to events initiated by the user or set off by the system. For instance, a code

could be written in a CommandButton control's click event procedure that

would load a file or display a result.

In addition to properties and events, methods can also be used to

manipulate controls from code. For instance, the move method can be used

with some controls to change their location and size.

Most of the controls provide choices to users that can be in the form of

OptionButton or CheckBox controls, ListBox entries or ScrollBars to select a

value. Let us discuss these controls by means of a few simple applications in

the following lessons.

Common properties, methods and events of controls
Every object, such as a form or control, has a set of properties that describe

it. Although this set isn't identical for all objects, some properties-- such as

those listed in Table are common to most controls. You can see every property

for a given control by looking at the Properties window in the IDE.

Common Properties of Visual Basic Controls

Property Description

Left
The position of the left side of a control with respect to its

container

Top The position of the top of a control with respect to its container

Height A control's height

Width A control's width

Name The string value used to refer to a control

Enabled
The Boolean (True/False) value that determines whether users

can manipulate the control

Visible
The Boolean (True/False) value that determines whether users

can see the control

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 54 of 124

Events
Events are what happen in and around your program. For example,

when a user clicks a button, many events occur: The mouse button is pressed,

the CommandButton in your program is clicked, and then the mouse button

is released. These three things correspond to the MouseDown event, the Click

event, and the MouseUp event. During this process, the GotFocus event for the

CommandButton and the LostFocus event for whichever object previously

held the focus also occur.

Again, not all controls have the same events, but some events are shared

by many controls (see Table). These events occur as a result of some specific user

action, such as moving the mouse, pressing a key on the keyboard, or clicking a

text box. These types of events are user-initiated events and are what you will

write code for most often.

Using GotFocus and LostFocus

The GotFocus and LostFocus events relate to most other events because

they occur whenever a new control becomes active to receive user input. This

makes GotFocus and LostFocus useful for data validation, the process of

making sure that data is in the proper format for your program.Be careful,

though! Improperly coding these two events can cause your program to begin

an endless loop, which will cause your program to stop responding.

Common Events of Visual Basic Controls

Event Occurrence

Change The user modifies text in a combo box or text box.

Click The user clicks the primary mouse button on an object.

DblClick
The user double-clicks the primary mouse button on an

object.

DragDrop The user drags an object to another location.

DragOver The user drags an object over another control.

GotFocus An object receives focus.

KeyDown The user presses a keyboard key while an object has focus.

KeyPress
The user presses and releases a keyboard key while an object

has focus.

KeyUp The user releases a keyboard key while an object has focus.

Event Occurrence

LostFocus An object loses focus.

MouseDown
The user presses any mouse button while the mouse pointer

is over an object.

MouseMove The user moves the mouse pointer over an object.

MouseUp
The user releases any mouse button while the mouse pointer

is over an object.

Example of Change event for TextBox

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 55 of 124

Private Sub Text1_Change()

Form1.BackColor = vbBlue

End Sub

When the user changes the text in the textbox backcolor of the form will

change to blue color.

Example of Click event for CommandButton

Private Sub Command1_Click()

Print "Click event activated"

End Sub

When the user clicks on the commandbutton1 “Click event activated”

will print on the form.

Example of DblClick event for Form

Private Sub Form_DblClick()

Form1.Caption = "Double Click event activated"

End Sub

Example of MoveMove event for PictureBox

Private Sub Picture1_MouseMove(Button As Integer, Shift As Integer, X As

Single, Y As Single)

Picture1.Picture = LoadPicture("D:\SMD\smc.jpg")

End Sub

Example of MoveDown event for Image Control

Private Sub Image1_MouseDown(Button As Integer, Shift As Integer, X As

Single, Y As Single)

Image1.Picture = LoadPicture("D:\SMD\smc.jpg")

End Sub

When the user move mouse down on Image1 the picture will be

displayed in the Image1 control.

Example of KeyPress event for Form

Private Sub Form_KeyPress(KeyAscii As Integer)

Print "Event KeyPress Activated"

End Sub

When the user press any key in the keyboard it prints ”KeyPress event

activated” on the form.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 56 of 124

Example of KeyUp event for Form

Private Sub Form_KeyUp(KeyCode As Integer, Shift As Integer)

Print "Event KeyUp Activated"

End Sub

When the user press any key in the keyboard it prints ”KeyUp event

activated” on the form.

Methods
Methods are blocks of code designed into a control that tell the control

how to do things, such as move to another location on a form. Just as with

properties, not all controls have the same methods, although some common

methods do exist, as shown in Table

Common Methods of Visual Basic Controls

Method Use

Move Changes an object's position in response to a code request

Drag Handles the execution of a drag-and-drop operation by the user

SetFocus Gives focus to the object specified in the method call

ZOrder Determines the order in which multiple objects appear onscreen

THE PICTUREBOX CONTROL
PictureBox controls are among the most powerful and complex items

in the Visual Basic Toolbox window. In a sense, these controls are more

similar to forms than to other controls. For example, PictureBox controls

support all the properties related to graphic output, including AutoRedraw,

ClipControls, HasDC, FontTransparent, CurrentX, CurrentY, and all the

Drawxxxx, Fillxxxx, and Scalexxxx properties. PictureBox controls also

support all graphic methods, such as Cls, PSet, Point, Line, and Circle and

conversion methods, such as ScaleX, ScaleY, TextWidth, and TextHeight. In

other words, all the techniques that I described for forms can also be used for

PictureBox controls (and therefore won't be covered again in this section).

Loading images

Once you place a PictureBox on a form, you might want to load an image

in it, which you do by setting the Picture property in the Properties window.

You can load images in many different graphic formats, including bitmaps

(BMP), device independent bitmaps (DIB), metafiles (WMF), enhanced

metafiles (EMF), GIF and JPEG compressed files, and icons (ICO and CUR). You

can decide whether a control should display a border, resetting the

BorderStyle to 0-None if necessary. Another property that comes handy in

this phase is AutoSize: Set it to True and let the control automatically resize

itself to fit the assigned image.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 57 of 124

Picture1.Picture = LoadPicture("c:\windows\setup.bmp")

LoadPicture(filename, [size], [colordepth], [x], [y])

Picture2.Picture = Picture1.Picture

You might want to set the Align property of a PictureBox control to something

other than the 0-None value. By doing that, you attach the control to one of

the four form borders and have Visual Basic automatically move and resize

the PictureBox control when the form is resized. PictureBoxcontrols expose a

Resize event, so you can trap it if you need to move and resize its child

controls too.

You can do more interesting things at run time. To begin with, you can

programmatically load any image in the control using the LoadPicture

function:

and you can clear the current image using either one of the following

statements:

‘These are equivalent.

Picture1.Picture = LoadPicture("")

Set Picture1.Picture = Nothing

The LoadPicture function has been extended in Visual Basic 6 to support

icon files containing multiple icons. The new syntax is the following:

where values in square brackets are optional. If filename is an icon file, you

can select a particular icon using the size or colordepth arguments. Valid sizes

are 0-vbLPSmall, 1-vbLPLarge (system icons whose sizes depend on the video

driver), 2-vbLPSmallShell, 3-vbLPLargeShell (shell icons whosedimensions are

affected by the Caption Button property as set in the Appearance tab in the

screen's Properties dialog box), and 4-vbLPCustom (size is determined by x

and y). Valid color depths are 0-vbLPDefault (the icon in the file that best

matches current screen settings), 1-vbLPMonochrome, 2-vbLPVGAColor (16

colors), and 3-vbLPColor (256colors).

You can copy an image from one PictureBox control to another by assigning

the target control's Picture property:

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 58 of 124

Picture

Box

Properties Methods Events

Align, Appearance, Circle, Change,

AutoRedraw, Cls, Click,

AutoSize, BackColor, Move, DblClick,

BorderStyle, PaintPicture, Resize,

ClipControls, Drag, Line, DragDrop,

Container, CurrentX, LinkExecute, DragOver,

CurrentY, LinkPoke, GotFocus,

DataChanged, LinkRequest, KeyDown,

DataField, LinkSend, KeyPress,

DataSource, DragIcon, Point, Print, PSet, KeyUp,

DragMode, DrawMode, Refresh, Scale, LinkClose,

DrawStyle, ScaleX, ScaleY, LinkError,

DrawWidth, Enabled, SetFocus, LinkNotify,

FillColor, FillStyle, ShowWhatsThis, LinkOpen,

Font, FontBold, TextHeight, LostFocus,

FontItalic, FontName, TextWidth, ZOrder MouseDown,

FontSize,

FontStrikethru,

FontTransparent,

 MouseMove,

MouseUp, Paint,

FontUnderline,

ForeColor, hDC,

Height,

HelpContextID, hWnd,

Image, Index, Left,

LinkItem, LinkMode,

LinkTimeout,

LinkTopic, MouseIcon,

MousePointer, Name,

Parent, Picture,

ScaleHeight, ScaleLeft,

ScaleMode, ScaleTop,

ScaleWidth, TabIndex,

TabStop, Tag, Top,

Visible,

WhatsThisHelpID,

Width

Example:

In this application, insert a command button and a picture box. Enter the

following code:

Private Sub Command1_Click()

Picture1.Picture = LoadPicture("D:\smd\smc.jpg")

End Sub

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 59 of 124

* You must ensure the path to access the picture is correct. Besides that,

the image in the picture box is not resizable

THE IMAGE CONTROL
Image controls are far less complex than PictureBox controls. They don't

support graphical methods or the AutoRedraw and the ClipControls properties,

and they can't work as containers, just to hint at their biggest limitations.

Nevertheless, you should always strive to use Image controls instead of

PictureBox controls because they load faster and consume less memory and

system resources. Remember that Image controls are windowless objects that

are actually managed by Visual Basic without creating a Windows object. Image

controls can load bitmaps and JPEG and GIF images.

When you're working with an Image control, you typically load a

bitmap into its Picture property either at design time or at run time using

the LoadPicture function. Image controls don't expose the AutoSize property

because by default they resize to display the contained image (as it happens

with PictureBox controls set at AutoSize = True). On the other hand, Image

controls support a Stretch property that, if True, resizes the image

(distorting it if necessary) to fit the control. In a sense, the Stretch property

somewhat remedies the lack of the PaintPicture method for this control. In

fact, you can zoom in to or reduce an image by loading it in an Image control

and then setting its Stretch property to True to change its width and height:

' Load a bitmap.

Image1.Stretch = False

Image1.Picture = LoadPicture("D:\smd\smc.jpg")

' Reduce it by a factor of two.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 60 of 124

Image1.Stretch = True

Image1.Move 0, 0, Image1.Width / 2, Image1.Width / 2

Image controls support all the usual mouse events. For this reason,

many Visual Basic developers have used Image controls to simulate

graphical buttons and toolbars. Now that Visual Basic natively supports these

controls, you'd probably better use Image controls only for what they were

originally intended.

Image

Properties Methods Events

Appearance, Drag, Move, Click,

BorderStyle, Refresh, DblClick,

Container, ShowWhatsThis, DragDrop,

DataChanged, ZOrder DragOver,

DataField, MouseDown,

DataSource, DragIcon, MouseMove,

DragMode, Enabled,

Height, Index, Left,

 MouseUp

MouseIcon,

MousePointer, Name,

Parent, Picture,

Stretch, Tag, Top,

Visible,

WhatsThisHelpID,

Width

Example:

In this program, we insert a command button and an image control into the

form. Besides that, we set the image Strech property to true. Next, enter te following

code:

Private Sub cmd_LoadImg_Click()

Image1.Picture = LoadPicture LoadPicture("D:\smd\smc.jpg")

End Sub

The Image Viewer

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 61 of 124

PictureBox Image Control

It act as container control it is not act as container control

Use of memory to store the picture
Not use of memory to store the

picture

Editing of picture is possible in

picture box

Editing of picture is not possible in

picture box

Having auto size property Not having auto size property

Not having stretch property Having stretch property

LABEL CONTROL
The label is a very useful control for Visual Basic, as it is not only

used to provide instructions and guides to the users, it can also be used to

display outputs. One of its most important properties is Caption. Using the

syntax Label.Caption, it can display text and numeric data. You can change

its caption in the properties window and also at runtime.

Most people use Label controls to provide a descriptive caption and

possibly an associated hot key for other controls, such as TextBox, ListBox,

and ComboBox, that don't expose the Caption property. In most cases, you just

place a Label control where you need it, set its Caption property to a suitable

string (embedding an ampersand character in front of the hot key you want

to assign), and you're done. Caption is the default property for Label controls.

Be careful to set the Label's TabIndex property so that it's 1 minus the

TabIndex property of the companion control.

Different settings for the Alignment property of Label controls.

Some important Properties of Label Control

 Caption - the text that is displayed in the label

 BackColor and ForeColor - colors of the background and the text

 BackStyle - Opaque or Transparent - whether the background is

visible or not

 Font - font and size of text

 Alignment - text centered, left or right

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 62 of 124

Label

Property Method Events

Alignment, Drag, LinkExecute, Change,

Appearance, LinkPoke, Click, DblClick,

AutoSize, LinkRequest, DragDrop,

BackColor, Move, Refresh, DragOver,

BackStyle, ShowWhatsThis, LinkClose,

BorderStyle, Zorder LinkError,

Caption, Container, LinkNotify,

DataChanged, LinkOpen,

DataSource, MouseDown,

DataField, DragIcon, MouseMove,

DragMode, Enabled, MouseUp

Font, FontBold,

FontItalic,

FontName, FontSize,

FontStrikethru,

FontUnderline,

ForeColor, Height,

Index, Left, LinkItem,

LinkMode,

LinkTimeout,

LinkTopic, MouseIcon,

MousePointer, Name,

Parent, TabIndex, Tag,

Top, UseMnemonic,

Visible,

WhatsThisHelpID,

Width, WordWrap

TEXTBOX CONTROL
The TextBox is like a Label but, it is used to input data into the program.

The data typed in is in the Text property of the control. TextBox controls offer

a natural way for users to enter a value in your program. For this reason, they

tend to be the most frequently used controls in the majority of Windows

applications. TextBox controls, which have a great many properties and

events, are also among the most complex intrinsiccontrols. In this section, I

guide you through the most useful properties of TextBox controls and show

how to solve some of the problems that you're likely to encounter.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 63 of 124

The following Figure summarizes the common TextBox control's properties

and methods.

 Property/
Method

Description

 Properties

Enabled

specifies whether user can interact with this control
or not

 Index Specifies the control array index

Locked

If this control is set to True user can use it else if this
control is set to false the control cannot be used

MaxLength

Specifies the maximum number of characters to be
input. Default value is set to 0 that means user can
input any number of characters

MousePointer

Using this we can set the shape of the mouse pointer
when over a TextBox

Multiline

By setting this property to True user can have more
than one line in the TextBox

PasswordChar

This is to specify mask character to be displayed in
the TextBox

ScrollBars

This to set either the vertical scrollbars or horizontal
scrollbars to make appear in the TextBox. User can
also set it to both vertical and horizontal. This
property is used with the Multiline property.

Text

Specifies the text to be displayed in the TextBox at
runtime

ToolTipIndex

This is used to display what text is displayed or in the
control

Visible

By setting this user can make the Textbox control
visible or invisible at runtime

 Method

 SetFocus Transfers focus to the TextBox

 Event procedures

 Change Action happens when the TextBox changes

 Click Action happens when the TextBox is clicked

GotFocus

Action happens when the TextBox receives the active
focus

 LostFocus Action happens when the TextBox loses it focus

KeyDown

Called when a key is pressed while the TextBox has
the focus

KeyUp

Called when a key is released while the TextBox has
the focus

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 64 of 124

Example1:

In this application, two text boxes are inserted into the form together with

a few labels. The two text boxes are used to accept inputs from the userand

one of the labels will be used to display the sum of two numbers thatare

entered into the two text boxes. Besides, a command button is also programmed

to calculate the sum of the two numbers using the plus operator. The program

use creates a variable sum to accept the summationof values from text box 1

and text box 2.The procedure to calculate and to display the output on the label

is shown below.

Private Sub Command1_Click()

'To add the values in TextBox1 and TextBox2

Sum = Val(Text1.Text) +Val(Text2.Text)

'To display the answer on label 1

Label1.Caption = Sum

End Sub

The output is shown in Figure

FRAME CONTROL
Frame controls are similar to Label controls in that they can serve as

captions for those controls that don't have their own. Moreover, Frame controls

can also (and often do) behave as containers and host other controls. In most

cases, you only need to drop a Frame control on a form and set its Caption

property. If you want to create a borderless frame, youcan set its BorderStyle

property to 0-None.

Controls that are contained in the Frame control are said to be child

controls. Moving a control at design time over a Frame control—or over any other

container, for that matter—doesn't automatically make that control achild of the

Frame control. After you create a Frame control, you can createa child control

by selecting the child control's icon in the Toolbox and drawing a new instance

inside the Frame's border. Alternatively, to make an existing control a child of a

Frame control, you must select the control, press Ctrl+X to cut it to the

Clipboard, select the Frame control, and press

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 65 of 124

Ctrl+V to paste the control inside the Frame. If you don't follow this procedure

and you simply move the control over the Frame, the two controls remain

completely independent of each other, even if the other control appears in front

of the Frame control.

Frame controls, like all container controls, have two interesting features.

If you move a Frame control, all the child controls go with it. If you make a

container control disabled or invisible, all its child controls also become

disabled or invisible. You can exploit these features to quickly change the

state of a group of related controls.

Frame

Properties Methods Events

Appearance, Drag, Click,

BackColor, Move, DblClick,

Caption, Refresh, DragDrop,

ClipControls, ShowWhatsThis, DragOver,

Container, DragIcon, ZOrder MouseDown,

DragMode, MouseMove,

Enabled, Font, MouseUp

FontBold, FontItalic,

FontName, FontSize,

FontStrikethru,

FontUnderline,

ForeColor, Height,

HelpContextID, hWnd,

Index, Left,

MouseIcon,

MousePointer, Name,

Parent, TabIndex, Tag,

Top, Visible,

WhatsThisHelpID,

Width

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 66 of 124

COMMAND BUTTON
The command button is one of the most important controls as it is

used to execute commands. It displays an illusion that the button is pressed

when the user click on it. The most common event associated with the

command button is the Click event, and the syntax for the procedure is

Private Sub Command1_Click ()

Statements

End Sub

The Caption property determines the text to display on the face of the

button. The Default property, if set to true, means that the button will be

activated (same as Clicked) if the <Enter> key is hit anywhere in the form.

If Cancel is set to True, the button will be activated from anywhere in the form

by the <Esc> key.

Command

Button

Properties Methods Events

Appearance, Drag, Move, Click,

BackColor, Cancel, Refresh, SetFocus, DragDrop,

Caption, Container, ShowWhatsThis, DragOver,

Default, DragIcon, ZOrder GotFocus,

DragMode, Enabled, KeyDown,

Font, FontBold, KeyPress,

FontItalic, KeyUp,

FontName, FontSize, LostFocus,

FontStrikethru,

FontUnderline, Height,

HelpContextID, hWnd,

 MouseDown,

MouseMove,

MouseUp

Index, Left,

MouseIcon,

MousePointer, Name,

Parent, Style,

TabIndex, TabStop,

Tag, Top, Value,

Visible,

WhatsThisHelpID,

Width

Example:

we want to crack a secret password entered by the user. In the design

phase, insert a command button. Next, insert a TextBox and delete Text1 from

the Text property. Besides that, set its PasswordChr to *. Now, enterthe

following code in the code window.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 67 of 124

Private Sub Command1_Click()

Dim yourpassword As String

yourpassword = Text1.Text

MsgBox ("Your password is: " & yourpassword)

End Sub

Run the program and enter a password, then click on the Show Password

button to reveal the password, as shown in Figure

The Password Cracker

You can also reveal the password by setting the PasswordChar property

back to normal mode, as follows:

Private Sub Command1_Click()

Dim yourpassword As String

Txt_Password.PasswordChar = ""

End Sub

THE CHECKBOX

The Check Box control lets the user selects or unselects an option. When

the Check Box is checked, its value is set to 1 and when it is unchecked, the

value is set to 0. You can include the statements Check1.Value=1 to mark

the Check Box and Check1.Value=0 to unmarkthe Check Box, as well as use

them to initiate certain actions. In checkbox user can select more than one

option. Multiple selections are allowed in checkbox.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 68 of 124

Check Box

Properties Methods Events
Alignment, Drag, Click,
Appearance, Move, DragDrop,
BackColor, Refresh, DragOver,
Caption, Container, SetFocus, GotFocus,
DataChanged, ShowWhatsThis, KeyDown,
DataField, ZOrder KeyPress,
DataSource, DragIcon, KeyUp,
DragMode, Enabled, LostFocus,
Font, FontBold, MouseDown,
FontItalic, FontName, MouseMove,
FontSize,
FontStrikethru,

 MouseUp

FontUnderline,

ForeColor, Height,

HelpContextID, hWnd,

Index, Left,

MousePointer, Name,

Parent, TabIndex,

TabStop, Tag, Top,

Value,

Visible,

WhatsThisHelpID,

Width

Example:

In this application will show which items are selected in a message

box.

Private Sub Command1_Click()

If Check1.Value = 1 And Check2.Value = 0 And Check3.Value = 0 Then

MsgBox "Apple is selected"

ElseIf Check2.Value = 1 And Check1.Value = 0 And Check3.Value = 0 Then

MsgBox "Orange is selected"

ElseIf Check3.Value = 1 And Check1.Value = 0 And Check2.Value = 0 Then

MsgBox "Orange is selected"

ElseIf Check2.Value = 1 And Check1.Value = 1 And Check3.Value = 0 Then

MsgBox "Apple and Orange are selected"

ElseIf Check3.Value = 1 And Check1.Value = 1 And Check2.Value = 0 Then

MsgBox "Apple and Pear are selected"

ElseIf Check2.Value = 1 And Check3.Value = 1 And Check1.Value = 0 Then

MsgBox "Orange and Pear are selected"

Else

MsgBox "All are selected"

End If

End Sub

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 69 of 124

The Output

OPTION BUTTON

set to “True” and when it is unselected; its value is set to “False”.

A group of OptionButton controls is often hosted in a Frame control.

This is necessary when there are other groups of OptionButton controls on

the form. As far as Visual Basic is concerned, all the OptionButton controls

on a form's surface belong to the same group of mutually exclusive selections,

even if the controls are placed at the opposite corners of the window. The only

way to tell Visual Basic which controls belong to which group is by gathering

them inside a Frame control. Actually, you can group your controls within any

control that can work as a container—PictureBox, for example—but Frame

controls are often the most reasonable choice.

 Properties Methods Events

 Alignment, Drag, Move, Click, DblClick,
 Appearance, Refresh, SetFocus, DragDrop,
 BackColor, Caption, ShowWhatsThis, DragOver,
 Container, DragIcon, Zorder GotFocus,

Option DragMode, Enabled, KeyDown,

Button Font, FontBold, KeyPress,
 FontItalic, FontName, KeyUp,
 FontSize, LostFocus,
 FontStrikethru, MouseDown,
 FontUnderline, MouseMove,

 ForeColor, Height, MouseUp

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 70 of 124

 HelpContextID, hWnd,

Index, Left,

MouseIcon,

MousePointer, Name,

Parent, TabIndex,

TabStop, Tag, Top,

Value, Visible,

WhatsThisHelpID,

Width

Example:

In this application, we want to change the background color of the form

according to the selected option. We insert three option buttons and change

their captions to "Red Background","Blue Background" and "Green

Background" respectively. Next, insert a command button and change its

name to cmd_SetColor and its caption to "Set Background Color". Now, click

on the command button and enter the following code in the code window:

Private Sub Command1_Click()

If Option1.Value = True Then

Form1.BackColor = vbRed

ElseIf Option2.Value = True Then

Form1.BackColor = vbBlue

Else

Form1.BackColor = vbGreen

End If

End Sub

Run the program, select an option and click the "Set Background Color"

produces the output, as shown in Figure

Figure

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 71 of 124

COMBOBOX
A combobox control is combination of textbox and listbox. This control

enables user to select either by typing in the text into combobox or by

selecting items from the list. The function of the Combo Box is also to present

a list of items where the user can click and select the items from the list.

However, the user needs to click on the small arrowhead on the right of the

combo box to see the items which are presented in a drop-down list. In order

to add items to the list, you can also use the AddItem method. Combobox is

collapsed and it does not displays all the items.

Drop down combo

The Dropdown Combo box first appears as only an edit area with a down

arrow button at the right. The list portion stays hidden until the user clicks the

down-arrow button to drop down the list portion. The user can either select a

value from the list or type a value in the edit area.

Simple combo

The Simple Combo box displays an edit area with an attached list box

always visible immediately below the edit area. A simple combo box displays

the contents of its list all the time. The user can select an item from the list

or type an item in the edit box portion of the combo box. A scroll bar is displayed

beside the list if there are too many items to be displayed in thelist box

area.

Drop down list

The Dropdown list combo box turns the combo box into a Dropdown

list box. At run time, the control looks like the Dropdown combo box. The user

could click the down arrow to view the list. The difference between Dropdown

combo & Dropdown list combo is that the edit area in the Dropdown list combo

is disabled. The user can only select an item and

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 72 of 124

cannot type anything in the edit area. Anyway this area displays the selected

item.

Property/Method Description

Properties

Enabled

By setting this property to True or False user can
decide whether user can interact with this control or
not

Index Specifies the Control array index

List
String array. Contains the strings displayed in the
drop-down list. Starting array index is 0.

ListCount
Integer. Contains the number of drop-down list items

ListIndex

Integer. Contains the index of the selected
ComboBox item. If an item is not selected,
ListIndex is -1

Locked
Boolean. Specifies whether user can type or not in
the ComboBox

MousePointer
Integer. Specifies the shape of the mouse
pointer when over the area of the ComboBox

NewIndex

Integer. Index of the last item added to the
ComboBox. If the ComboBox does not containany
items , NewIndex is -1

Sorted
Boolean. Specifies whether the ComboBox's
items are sorted or not.

Style
Integer. Specifies the style of the ComboBox's
appearance

TabStop
Boolean. Specifies whether ComboBox receives
the focus or not.

Text
String. Specifies the selected item in the
ComboBox

ToolTipIndex
String. Specifies what text is displayed as the
ComboBox's tool tip

Visible
Boolean. Specifies whether ComboBox is visible or
not at run time

Methods

AddItem Add an item to the ComboBox

Clear Removes all items from the ComboBox

RemoveItem Removes the specified item from the ComboBox

SetFocus Transfers focus to the ComboBox

Event Procedures

Change Called when text in ComboBox is changed

DropDown
Called when the ComboBox drop-down list is
displayed

GotFocus Called when ComboBox receives the focus

LostFocus Called when ComboBox loses it focus

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 73 of 124

Combo1.AddItemitem number/string

Combo1.RemoveItem index

Adding items to a List

It is possible to populate the list at design time or run time

Design Time: To add items to a list at design time, click on List property in

the property box and then add the items. Press CTRL+ENTER after adding

each item as shown below.

The item argument is a string that represents the text to add to the list

Following is an example to add item to a combo box. The code is typed in the

Form_Load event

Private Sub Form_Load()

Combo1.AddItem “Bengaluru”

Combo1.AddItem “Ballari”

Combo1.AddItem “Bidar”

Combo1.AddItem “Chitradurga”

Combo1.AddItem “Raichur”

Combo1.AddItem “Doddabalapur”

End Sub

Removing Items from a List

The RemoveItem method is used to remove an item from a list.

The syntax for this is given below.

The following code verifies that an item is selected in the list and then

removes the selected item from the list.

Private Sub cmdRemove_Click()

If combo1.ListIndex > -1 Then

combo1.RemoveItem combo1.ListIndex

End If

End Sub

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 74 of 124

Combo1.clear

Clearing all Items from a List

The clear method is used to remove an item from a list.

The syntax for this is given below.

LISTBOX
ListBox present a list of choices that are displayed vertically in single

column, if number of items exist the value can be displayed scrollbar

automatically appear on control. Listbox is expanded and displays all the

items.

ListBox have list property contain list or item to display. To add the item

at design time, click on list property & add item, press ctrl + enter after adding

each item. To add item at runtime to AddItem method is used.

Property/Method Description

Properties

Enabled

By setting this property to True or False user

can decide whether user can interact with this

control or not

Index Specifies the Control array index

List
String array. Contains the strings displayed in

the drop-down list. Starting array index is 0.

ListCount
Integer. Contains the number of drop-down list

items

ListIndex

Integer. Contains

ListBox item. If

ListIndex is -1

the

an

index

item

of

is

the

not

selected

selected,

Locked
Boolean. Specifies whether user can type or not

in the ListBox

MousePointer
Integer. Specifies the shape of the mouse

pointer when over the area of the ListBox

NewIndex

Integer. Index of the last item added to the

ListBox. If the ListBox does not contain any

items , NewIndex is -1

Sorted
Boolean. Specifies whether the ListBox's items

are sorted or not.

Style
Integer. Specifies

appearance

the style of the ListBox's

TabStop
Boolean. Specifies whether ListBox receives the

focus or not.

Text String. Specifies the selected item in the ListBox

ToolTipIndex String. Specifies what text is displayed as the

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 75 of 124

List1.AddItemitem number/string

 ListBox's tool tip

Visible
Boolean. Specifies whether ListBox is visible or

not at run time

Methods

AddItem Add an item to the ListBox

Clear Removes all items from the ListBox

RemoveItem Removes the specified item from the ListBox

SetFocus Transfers focus to the ListBox

Event Procedures

Change Called when text in ListBox is changed

DropDown
Called when the ListBox drop-down list is

displayed

GotFocus Called when ListBox receives the focus

LostFocus Called when ListBox loses it focus

Adding items to a List

It is possible to populate the list at design time or run time

Design Time: To add items to a list at design time, click on List property in

the property box and then add the items. Press CTRL+ENTER after adding

each item as shown below.

Run Time : The AddItem method is used to add items to a list at run time.

The AddItem method uses the following syntax.

The item argument is a string that represents the text to add to the list

Following is an example to add item to a combo box. The code is typed in the

Form_Load event

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 76 of 124

List1.RemoveItem index

List1.clear

Private Sub Form_Load()

List1.AddItem “Bengaluru”

List1.AddItem “Ballari”

List1.AddItem “Bidar”

List1.AddItem “Chitradurga”

List1.AddItem “Raichur”

List1.AddItem “Doddabalapur”

End Sub

Removing Items from a List

The RemoveItem method is used to remove an item from a list.

The syntax for this is given below.

The following code verifies that an item is selected in the list and then

removes the selected item from the list.

Private Sub cmdRemove_Click()

If List1.ListIndex > -1 Then

List1.RemoveItem combo1.ListIndex

End If

End Sub

Clearing all Items from a List

The clear method is used to remove an item from a list.

The syntax for this is given below.

Difference between Listbox & Combobox

List Box :

1. Occupies more space but shows more than one value.

2. We can select multiple items.

3. we can use checkboxes with in the list box.

4. Listbox is much easier to handle.

5. We can't add image item in listbox.

Combo Box:

1. Occupies less space but shows only one value for visibility

2. Multiple select is not possible

3. can't use checkboxes within combo boxes

4. combobox is not easier to handle.

5. we can add image item in combobox.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 77 of 124

HSCROLLBAR & VSCROLLBAR(HORIZONTAL & VERTICAL

SCROLL BARS)

The ScrollBar is a commonly used control, which enables the user toselect

a value by positioning it at the desired location. It represents a set of values. The

Min and Max property represents the minimum and maximum value. The value

property of the ScrollBar represents its current value, thatmay be any integer

between minimum and maximum values assigned.

Horizontal and vertical scroll bars are widely used in Windows

applications.

Scroll bars provide an intuitive way to move through a list of

information and make great input devices.

• Both type of scroll bars are comprised of three areas that can be

clicked, or dragged, to change the scroll bar value. Those areas are:

End Arrow

Scroll Bar Properties:

Scroll Box(thumb) Bar area

LargeChange: Increment added to or subtracted from the scroll bar Value

property when the bar area is clicked.

Max : The value of the horizontal scroll bar at the far right and the value of

the vertical scroll bar at the bottom. Can range from -32,768 to 32,767.

Min : The other extreme value - the horizontal scroll bar at the left and the vertical

scroll bar at the top. Can range from -32,768 to 32,767.

SmallChange : The increment added to or subtracted from the scroll bar

Value property when either of the scroll arrows is clicked.

Value : The current position of the scroll box (thumb) within the scroll bar.

If you set this in code, Visual Basic moves the scroll box to the proper position.

Properties for horizontal scroll bar:
Small Change

Min Max

Small Change Value Large Change

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 78 of 124

Properties for vertical scroll bar:
Min

· Small Change

Large Value

Value

Large Value

Small Change

Max

A couple of important notes about scroll bars:

1. Note that although the extreme values are called Min and Max, they do

not necessarily represent minimum and maximum values. There is nothing

to keep the Min value from being greater than the Max value. In fact, with

vertical scroll bars, this is the usual case. Visual Basic automatically

adjusts the sign on the SmallChange and LargeChange properties to insure

proper movement of the scroll box from one extreme to the other.

2. If you ever change the Value, Min, or Max properties in code, make sure

Value is at all times between Min and Max or and the program will stop with

an error message.

Scroll Bar Events:

Change Event is triggered after the scroll box's position has been modified. Use

this event to retrieve the Value property after any changes in the scroll bar.

Scroll Event triggered continuously whenever the scroll box is being moved.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 79 of 124

TIMER CONTROL
A Timer control is invisible at run time, and its purpose is

to send a periodic pulse to the current application. You can trap

this pulse by writing code in the Timer's Timer event procedure

and take advantage of it to execute a task in the background or

to monitor a user's actions. This control exposes only two meaningful

properties: Interval and Enabled. Interval stands for the number of

milliseconds between subsequent pulses (Timer events), while Enabled lets

you activate or deactivate events. When you place the Timer control on a

form, its Interval is 0, which means no events.

 Many times, especially in using graphics, we want to repeat certain operations

at regular intervals. The timer tool allows such repetition. The timer tool does

not appear on the form while the application is running.

 Timer tools work in the background, only being invoked at time intervals

you specify. This is multi-tasking - more than one thing is happening at a

time.

Timer Properties:

Enabled : Used to turn the timer on and off. When on, it continues to

operate until the Enabled property is set to False.

Interval :’ Number of milliseconds between each invocation of the Timer

Event.

Timer Events:’

The timer tool only has one event, Timer. It has the form:

Private Sub Timer1_Timer()

.

.

End Sub

This is where you put code you want repeated every Interval seconds

Example:

In this application, we use a very simple technique to show animation by using

the properties Visible=False and Visible=true to show and hide two images

alternately. When you click on the program, you should see the following

animation.

Private Sub Timer1_Timer()

If Image1.Visible = True Then

Image1.Visible = False

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 80 of 124

Image2.Visible = True

ElseIf Image2.Visible = True Then

Image2.Visible = False

Image1.Visible = True

End If

End Sub

Output

DRIVELISTBOX
The drive list box control allows a user to select a valid

disk drive at run-time. The DriveListBox is for displaying a list

of drives available in your computer. When you place this control

into the form and run the program, you will be able to select

different drives from your computer as shown in Figure.

It displays the available drives in a drop-down combo box. No code is needed

to load a drive list box; Visual Basic does this for us. We use the box to get the

current drive identification. DriveListBox control is a combobox-like control

that's automatically filled with your drive's letters and volume labels.

Drive List Box Properties:

Drive: Contains the name of the currently selected drive.

Drive List Box Events:

Change Triggered whenever the user or program changes the drive

selection.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 81 of 124

DIRLISTBOX
The DirListBox means the Directory List Box. It is for

displaying a list of directories or folders in a selected drive. When

you place this control into the form and run the program,you will

be able to select different directories from a selected

drive in your computer as shown in Figure. The DirListBox is a special list box

that displays a directory tree. The directory list box displays an ordered,

hierarchical list of the user's disk directories and subdirectories. The

directory structure is displayed in a list box. Like, the drive list box, little

coding is needed to use the directory list box – Visual Basic does most of the

work for us.

Directory List Box Properties:

Path: Contains the current directory path.

Directory List Box Events:

Change Triggered when the directory selection is changed.

FILELISTBOX
The file list box locates and lists files in the directory

specified by its Path property at run-time. You may select the

types of files you want to display in the file list box. The FileListBox

control is a special-purpose ListBox control that

displays all the files in a given directory, optionally filtering them based on

their names, extensions, and attributes.

File List Box Properties:

FileName: Contains the currently selected file name.

Path: Contains the current path directory.

Pattern: Contains a string that determines which files will be displayed.

It supports the use of * and ? wildcard characters. For example, using *.dat only

displays files with the .dat extension.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 82 of 124

File List Box Events:

DblClick Triggered whenever a file name is double-clicked.

PathChange Triggered whenever the path changes in a file list box.

Note: You can also use the MultiSelect property of the file list box to allow

multiple file selection.

These controls often work together on the same form; when the user

selects a drive in a DriveListBox, the DirListBox control is updated to show

the directory tree on that drive. When the user selects a path in the DirListBox

control, the FileListBox control is filled with the list of files inthat directory.

These actions don't happen automatically, however—you must write code to

get the job done.

After you place a DriveListBox and a DirListBox control on a form's

surface, you usually don't have to set any of their properties; in fact, these

controls don't expose any special property, not in the Properties window at

least. The FileListBox control, on the other hand, exposes one property that

you can set at design time—the Pattern property. This property indicates

which files are to be shown in the list area: Its default value is *.* (all files), but

you can enter whatever specification you need, and you can also enter

multiple specifications using the semicolon as a separator.

SHAPE CONTROL

The shape tool can create circles, ovals, squares,rectangles,

and rounded squares and rectangles. Colors can be used and

various fill patterns are available. Shape control is an

extension of the Line control. It can display six basic shapes: Rectangle,

Square, Oval, Circle, Rounded Rectangle, and Rounded Square. It supports

all the Line control's properties and a few more: BorderStyle (0-Transparent,

1-Solid), FillColor, and FillStyle (the same as a form's properties with the same

names). The same performance considerations I pointed out for the Line

control apply to the Shape control.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 83 of 124

Shape Tool Properties:

BackColor: Determines the background color of the shape (only used

when FillStyle not Solid.

BackStyle: Determines whether the background is transparent or

opaque.

BorderColor: Determines the color of the shape's outline.

BorderStyle: Determines the style of the shape's outline. The border

can be transparent, solid, dashed, dotted, and combinations.

BorderWidth: Determines the width of the shape border line.

FillColor: Defines the interior color of the shape.

FillStyle: Determines the interior pattern of a shape. Some choices

are: solid, transparent, cross, etc.

Shape: Determines whether the shape is a square, rectangle, circle, or

some other choice.

· Like the line tool, events and methods are not used with the shape tool.

· Shapes are covered by all objects except perhaps line tools and image boxes

(depends on their Z-order) and printed or drawn information. This is agood

feature in that you usually use shapes to contain a group of control objects

and you'd want them to lie on top of the shape.

LINE CONTROL
The line tool creates simple straight line segments of various

width and color. Together with the shape tool discussed next, you

can use this tool to 'dress up' your application.

Line Tool Properties:

BorderColor: Determines the line color.

BorderStyle: Determines the line 'shape'. Lines can be transparent,

solid, dashed, dotted, and combinations.

BorderWidth: Determines line width.

· There are no events or methods associated with the line tool.

· Since the line tool lies in the middle-layer of the form display, any lines drawn

will be obscured by all controls except the shape tool or image box.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 84 of 124

THE OLE CONTROL
When OLE first made its appearance, the concept of Object Linking and

Embedding seemed to most developers nothing short of magic. The ability to

embed a Microsoft Word Document or a Microsoft Excel worksheet within

another Windows application seemed an exciting one, and Microsoftpromptly

released the OLE control—then called the OLE Container control—to help

Visual Basic support this capability.

In the long run, however, the Embedding term in OLE has lost much

of its appeal and importance, and nowadays programmers are more

concerned and thrilled about Automation, a subset of OLE that lets them

control other Windows applications from the outside, manipulating their

object hierarchies through OLE. For this reason, I won't describe the OLE

control: It's a rather complex object, and a thorough description of its many

properties, methods, andfm events (and quirks) would take too much space.

CONTROL ARRAYS OR ARRAY OF CONTROLS

A control array can be created only at design time, and at the very

minimum at least one control must belong to it. You create a control array

following one of these three methods:

 You create a control and then assign a numeric, non-negative value to

its Index property; you have thus created a control array with just one

element.

 You create two controls of the same class and assign them an identical

Name property. Visual Basic shows a dialog box warning you that there's

already a control with that name and asks whether you want tocreate a

control array. Click on the Yes button.

 You select a control on the form, press Ctrl+C to copy it to the clipboard,

and then press Ctrl+V to paste a new instance of the control, which has the

same Name property as the original one. Visual Basic shows the warning

mentioned in the previous bullet.

Control arrays are one of the most interesting features of the Visual

Basic environment, and they add a lot of flexibility to your programs:

 Controls that belong to the same control array share the same set of

event procedures; this often dramatically reduces the amount of code you

have to write to respond to a user's actions.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 85 of 124

 You can dynamically add new elements to a control array at run time;

in other words, you can effectively create new controls that didn't exist at

design time.

 Elements of control arrays consume fewer resources than regular

controls and tend to produce smaller executables. Besides, Visual Basic forms

can host up to 256 different control names, but a control array counts as one

against this number. In other words, control arrays let you effectively

overcome this limit.

ARRAYS OF MENU ITEMS
 Control arrays are especially useful with menus because arrays offer a

solution to the proliferation of menu Click events and, above all, permit

you to create new menus at run time. An array of menu controls is

conceptually similar to a regular control array, only you set the Index

property to a numeric (non-negative) value in the Menu Editor instead of

in the Properties window.

 There are some limitations, though: All the items in an array of menu

controls must be adjacent and must belong to the same menu level, and

their Index properties must be in ascending order (even though holes in

the sequence are allowed). This set of requirements severely hinders your

ability to create new menu items at run time. In fact, you can create new

menu items in well-defined positions of your menu hierarchy—namely,

where you put a menu item with a nonzero Index value—but you can't

create new submenus or new top-level menus.

GRAPHICS METHODS
The graphic methods allow you to draw on the form and the PictureBox

control. In Visual Basic 6, graphic methods are only supportedby the

form object and the PictureBox control.

 Graphics methods apply to forms and picture boxes (remember a

picture box is like a form within a form). With these methods, we can draw

lines, boxes, and circles. Before discussing the commands that actually

perform the graphics drawing, though, we need to look at two other topics:

screen management and screen coordinates.

 In single program environments (DOS, for example), when somethingis

drawn on the screen, it stays there. Windows is a multi-tasking environment. If

you switch from a Visual Basic application to some other application, your Visual

Basic form may become partially obscured. When you return to your Visual

Basic application, you would like the form to appear like it did before being

covered. All controls are automatically restored to the screen. Graphics

methods drawings may or may not be

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 86 of 124

restored - we need them to be, though. To accomplish this, we must use

proper screen management.

 The simplest way to maintain graphics is to set the form or picture box's

AutoRedraw property to True. In this case, Visual Basic always maintains a

copy of graphics output in memory (creates persistent graphics). Another

way to maintain drawn graphics is (with AutoRedraw set to False) to put all

graphics commands in the form or picture box's Paint event. This event is

called whenever an obscured object becomes unobscured. There are

advantages and disadvantages to both approaches (beyond the scope of

discussion here). For now, we will assume our forms won't get obscured and,

hence, beg off the question of persistent graphics and using the AutoRedraw

property and/or Paint event.

All graphics methods described here will use the default coordinate

system

Note the x (horizontal) coordinate runs from left to right, starting at 0

and extending to ScaleWidth - 1. The y (vertical) coordinate goes from top to

bottom, starting at 0 and ending at ScaleHeight - 1. Points in this coordinate

system will always be referred to by a Cartesian pair, (x, y). Later, we will see

how we can use any coordinate system we want.

ScaleWidth and ScaleHeight are object properties representing the

“graphics” dimensions of an object. Due to border space, they are not the same

as the Width and Height properties. For all measurements in twips (default

coordinates), ScaleWidth is less than Width and ScaleHeight is less than

Height. That is, we can’t draw to all points on the form.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 87 of 124

 Print: Print is the simplest graphic method in Visual Basic 6. This

method has been used throughout the earlier versions of the

language. It prints some text on the form or on the PictureBox control.

It displays texts.

 Cls: The Cls method is another simple graphic method that is used to

clear the surface of the form or the PictureBox control. If some texts are

present, you can use the Cls method to remove the texts. It clears any

drawing created by the graphic methods.

 Point: The Point method returns the color value from an image for a

pixel at a particular point. This method is generally used to retrieve

color values from bitmaps.

 Refresh: The refresh method redraws a control or object. In other

words, it refreshes the control. Generally, controls are refreshed

automatically most of the times. But in some cases, you need to refresh

a control’s appearance manually by explicitly invoking the Refresh

method.

 PSet: The PSet method sets the color of a single pixel on the form.

This method is used to draw points.

 Line: The Line method draws a line. Using the Line method, you can

also draw other geometric shapes such as rectangle, triangle etc.

 Circle: The Circle method draws a circle. Using the Circle method, you

can also draw other geometric shapes such ellipses, arcs etc.

 PaintPicture: The PaintPicture method displays an image on the form

at run-time.

 TextHeight: The TextHeight method returns the height of a string on

the form at run-time.

 TextWidth: The TextWidth method returns the width of a string on the

form at run-time.

GRAPHIC PROPERTIES

The graphic properties are useful while working with the graphic methods.

Some of the form's properties and some of the PictureBox's properties

are the graphics properties.

The common graphic properties are discussed in this section. You’ll learn

more about them using code examples later in this tutorial.

Consider the following graphic properties.

 DrawMode: The DrawMode property sets the mode of drawing for the

appearance of output from the graphic methods. In the DrawMode

property, you can choose from a variety of values.

 DrawStyle: The DrawStyle property sets the line style of any drawing from

any graphic methods. It allows you to draw shapes of different line styles

such as solid, dotted, dashed shapes etc.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 88 of 124

 DrawWidth: The DrawWidth property sets the line width of any

drawing from any graphic methods. While drawing shapes, you can control

the thickness of the lines using this property.

 FillColor: The FillColor property is used to fill any shapes with a color.

You may use the symbolic color constants to fill your shapes.You

may also use the color codes as well as the RGB function.

 FillStyle: The FillStyle property lets you fill shapes in a particularfilling

style.

 ForeColor: The ForeColor property is used to set or return the foreground

color.

 AutoRedraw: Set the AutoRedraw property to True to get a persistent

graphics when you’re calling the graphic methods from any event, but

not from the Paint event.

 ClipControls: Set the ClipControls property to True to make the

graphic methods repaint an object.

 Picture: The Picture property is used to set a picture. Pictures can be

set both at design time and run-time.

Drawing points

This section shows you how to draw points using the PSet method and

how to use the Step keyword with the PSet method.

Drawing points using the PSet method

The Pset method allows you to draw a point. You need to specify the

coordinate i.e. the drawing position. You can also pass a color constant that

is an optional argument in the PSet method.

Private Sub cmdShow_Click()

DrawWidth = 10

PSet (100, 500)

End Sub

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 89 of 124

Relative positioning with the Step keyword

The Step keyword allows you to draw in a position relative to the

current position. See the example.

Example:

Code:

Private Sub cmdShow_Click()

DrawWidth = 10

CurrentX = 500

CurrentY = 500

PSet Step(0, 0)

End Sub

The above code draws a point in the (0, 0) position relative to the current

position that is (500, 500).

That means, the point is drawn in the (500, 500) position. But this is (0, 0)

position relative to the current position.

Output of code example:

Drawing lines

The Line method lets you draw lines in Visual Basic 6. You need to

specify the starting point and the finishing point of the line in the argument.

You may also specify the color of the line. This is optional, though.

A simple line

The following code example shows how to draw a simple line using the

Line method in Visual Basic 6.

Example:

Code:

Private Sub cmdShow_Click()

DrawWidth = 5

'A hyphen is required between the points

Line (0, 0)-(2000, 2000), vbBlue

End Sub

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 90 of 124

Output of code example:

\

A line with drawing styles

Form’s DrawStyle property lets you draw lines using a particular style.

The constant values of the DrawStyle property are 0 (vbSolid), 1 (vbDash), 2

(vbDot), 3 (vbDashDot, 4 (vbDashDotDot), 5 (vbTransparent) and 6

(vbInsideSolid). The default value is 0, vbSolid. You may use the numeric

constant or the symbolic constant such as vbSolid, vbDash etc to change

drawing styles in your code.

NOTE: The DrawStyle property does not work if the value of DrawWidth is

other than 1.

Example:

Code:

DrawWidth = 1

DrawStyle = 1

'A hyphen is required between the points

Line (0, 0)-(2000, 2000), vbBlue

DrawStyle = vbDashDot

Line (100, 900)-(2800, 2800), vbRed

Output:

Drawing circles

You can draw a circle using the Circle method in Visual Basic 6. You may

also use the Circle method to draw different geometric shapes such as ellipses,

arcs etc. You need to specify the circle’s center and radius values to draw a

circle using the Circle method.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 91 of 124

A simple circle

The following code draws a simple circle using the Circle method in

Visual Basic 6.

Example:

Code:

Private Sub cmdShow_Click()

DrawWidth = 3

Circle (1800, 1800), 1000, vbRed

End Sub

In the above code, (1800, 1800) is the circle’s center, and the radius value is

1000. The color constant ‘vbRed’ is an optional argument.

Output of code example 10:

A circle filled with color
The following code example shows how to fill a circle with color in

Visual Basic 6.

Example 11:

Code:

Private Sub cmdShow_Click()

FillStyle = vbSolid

FillColor = &H80C0FF

DrawWidth = 3

Circle (1800, 1800), 1000, vbRed

End Sub

Output:

Rectangle

The Line method can be used to draw different geometric shapes such

as rectangle, triangle etc. The following example shows you how to draw a

rectangle using the Line method in Visual Basic 6.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 92 of 124

Example:

Code:

Private Sub cmdShow_Click()

DrawWidth = 3

Line (300, 300)-Step(4000, 2000), vbBlue, B

End Sub

The B argument in the Line method lets you draw a rectangle.

Output:

Displaying an image

The LoadPicture function sets a picture to the PictureBox control or the

form object. It requires the file path as an argument. The following example

shows you how to use the LoadPicture function.

Example:

Code:

Private Sub cmdShow_Click()

Picture1 = LoadPicture("D:\pic.JPG")

End Sub

Output:

The Paint event

The Paint event fires automatically when the form is refreshed. For

instance, the Paint event fires when you uncover areas in a form or when you

resize the form. If the AutoRedraw property is set to True, this event willnot

be invoked. And while resizing, if you shrink the form, this event doesnot

fire.

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest. Professor, B.S. College Page 93 of 124

You may use the necessary graphic methods inside the Paint event

procedure so that whenever the form is refreshed, the graphic methods are

automatically called.

Example:

Code:

Private Sub Form_Paint()

DrawWidth = 5

Circle (Rnd * 3000, Rnd * 7000), Rnd * 800, vbYellow

End Sub

New circles are drawn automatically when you resize the form. New

circles are drawn in random positions and with random sizes.

USING COLORS
Notice that all the graphics methods can use a Color argument. If that

argument is omitted, the ForeColor property is used. Color is actually a

hexadecimal (long integer) representation of color - look in the Properties

Window at some of the values of color for various object properties. So, one

way to get color values is to cut and paste values from the Properties Window.

There are other ways, though.

SYMBOLIC CONSTANTS:
Visual Basic offers eight symbolic constants (see Appendix I) to represent

some basic colors. Any of these constants can be used as a Color argument.

Constant Value Color

vbBlack 0x0 Black

vbRed 0xFF Red

vbGreen 0xFF00 Green

vbYellow 0xFFFF Yellow

vbBlue 0xFF0000 Blue

vbMagenta 0xFF00FF Magenta

vbCyan 0xFFFF00 Cyan

vbWhite 0xFFFFFF White

QBCOLOR FUNCTION:

For Microsoft QBasic, GW-Basic and QuickBasic programmers, Visual Basic

replicates the sixteen most used colors with the QBColor function. The color is

specified by QBColor(Index), where the colors corresponding to the Index are:

Index Color Index Color

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 94 of 124

RGB(Red, Green, Blue)

0 Black 8 Gray

1 Blue 9 Light blue

2 Green 10 Light green

3 Cyan 11 Light cyan

4 Red 12 Light red

5 Magenta 13 Light magenta

6 Brown 14 Yellow
7 White 15 Light (bright) white

RGB FUNCTION:
The RGB function can be used to produce one of 224 (over 16 million)

colors!

The syntax for using RGB to specify the color property is:

where Red, Green, and Blue are integer measures of intensity of the

corresponding primary colors. These measures can range from 0 (leastintensity)

to 255 (greatest intensity). For example, RGB(255, 255, 0) will produce yellow.

· Any of these four representations of color can be used anytime your Visual

Basic code requires a color value.

Color Examples:

Form1.BackColor = vbGreen

picExample.FillColor = QBColor(3)

label1.ForeColor = RGB(100, 100, 100)

ACTIVEX CONTROLS

An ActiveX control is a component that may be added to the Form, like

the controls in the ToolBox. You can build three different types of ActiveX

control in Visual Basic.

You can build an ActiveX Control without using any existing controls,

designing your control completely from scratch.

You can build a control that takes an existing control and extends its

functionality.

For example validating data entered into a TextBox.

You can build an ActiveX control that is made up of existing controls

(Constituent Controls).

For example grouping a Label and a TextBox to make a control that provides

text input with a read-only prompt.

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 95 of 124

To create an ActiveX control, start a new project and select ActiveX

Control as the project type. We will develop a control called RGBMixer, so

change the Name property to RGBMixer. The first stage is to draw the

Constituent Controls.

THE MULTIPLE DOCUMENT INTERFACE (MDI)
The Multiple Document Interface (MDI) was designed to simplify the

exchange of information among documents, all under the same roof. With

the main application, you can maintain multiple open windows, but not

multiple copies of the application. Data exchange is easier when you can

view and compare many documents simultaneously.

You almost certainly use Windows applications that can open multiple

documents at the same time and allow the user to switch among them with

a mouse-click. Multiple Word is a typical example, although most people use

it in single document mode. Each document is displayed in its own window,

and all document windows have the same behavior. The main Form, or MDI

Form, isn't duplicated, but it acts as a container for all the windows, and it

is called the parent window. The windows in which the individual

documents are displayed are called Child windows.

An MDI application must have at least two Form, the parent Form and

one or more child Forms. Each of these Forms has certain properties. There

can be many child forms contained within the parent Form, but there can be

only one parent Form.

The parent Form may not contain any controls. While the parent Form

is open in design mode, the icons on the ToolBox are not displayed, but you

can't place any controls on the Form. The parent Form can, and usually has its

own menu.

Advantages OF MDI
 With multiple document interfaces (and also tabbed document interfaces),

a single menu bar and/or toolbar is shared between all child windows,

reducing clutter and increasing efficient use of screen space. This argument

is less relevant on an operating system which uses a common menu bar.

 An application's child windows can be

hidden/shown/minimized/maximized as a whole.

 Features such as "Tile" and "Cascade" can be implemented for the child

windows.

 Authors of cross-platform applications can provide their users with

consistent application behavior between platforms.

 If the windowing environment and OS lack good window management, the

application author can implement it themselves.

https://en.wikipedia.org/wiki/Tabbed_document_interface
https://en.wikipedia.org/wiki/Tabbed_document_interface
https://en.wikipedia.org/wiki/Toolbar

 Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 96 of 124

 Modularity: An advanced window manager can be upgraded independently

of the applications

 Without an MDI frame window, floating toolbars from one application can

clutter the workspace of other applications, potentially confusing users

with the jumble of interfaces.

VB program for creating MDI application with Menu

This is an application program, that demonstrates about MDI

application

1. Start a new project by selecting file->new project. Select standard EXE as

the project type if you have the project wizard enabled.

2. You will already a have a form in the project. Set its name property to

formchild and its caption property to MDI child.

3. To create the MDI parent form, right click the forms folder in the project

Explore and select add ->MDI form. If the form wizard appears, select MDI form.

4. Set the name property to formMDI and the caption property to MDI parent

to MDI parent.

5. Right click project1 in the project Explorer and select project1 properties

from the top-up menu. Set the startup object list to form MDI. If you omit

this, the application will start with the child form showing.

6. Select form child from the project Explorer. Set the form’s MDI child

property to true. This will case this form, which is the child, to rest inside of

the MDI parent container.

7. Select form MDI the project Explorer.

8. Start the menu designer by selecting tools->Menu Editor. You will see a

window like the one in

9. Type & file in the caption field.

10. in the name field, type menufile.

11. Click the next button.

12. Click the arrow right button.

13. Enter & new in the caption field.

14. in the name field, type menunew.

15. Click the ok button to close the Menu Editor.

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 97 of 124

16. The form MDI from should now have a file menu on it. Select file ->New

from the MDI menu. this will open up the window.

17. In the private sub menu file New-click () event, type the following lines of

code:

18. Save and Run the project.

PARENT FORM:

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 98 of 124

UNIT V

MENUS

MENU

The menu is a bar at the top of the form. The standard form is display

without menu, but the user can add it. This menu could be included in form or

MDI using menu editor.

MENU EDITOR

To use menu there are four ways:

1- Press menu icon from toolbar.

2- press (ctrl+E) from key board.

3- click on: tools>Menu Editor.

4- Right Click on Form or MDI form Menu editor box appears.

Creating Menus in VB

Menus Windows applications provide groups of related commands in

menus. These commands depend on the application, but some- such as Open

and Save – are frequently found in applications. Visual Basic provides an easy

way to create menus with the modal Menu Editor dialog. The dialog is

displayed when Menu Editor is selected from the tools menu.

The menu editor command is grayed unless the form is visible. The menu

dialog can also be displayed by right-clicking the form and selecting menu

editor.

The menu editor dialog, shown in figure below, contains the textboxes

 Caption and Name. The value entered in the Caption Textbox is the menu

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 99 of 124

name the user sees. The value entered in the Name Textbox is the variable

name the programmer uses. Every menu must have a Caption and a Name.

Menus are like other controls in that they have properties and events. The menu

editor is a way of setting select properties for a menu. Once a menu is created, its

properties can be viewed in the properties window and its eventsin the code

window. The programmer can create menu control arrays. TheIndex Textbox

specifies the menu’s index in the control array. Menus that are not top level

menus can have shortcut keys (combinations of Ctrl, Shift and letter keys).

Shortcut keys are specified using the Shortcut ComboBox. All shortcut keys

listed in the shortcut ComboBox are predefined by visual basic. Programmers

may not define their own.

Each menu item has four properties associated with it. These properties can

be set at design time using the Menu Editor or at run-time using the standard

dot notation. These properties are:

Checked Used to indicate whether a toggle option is turned on or off. If True,

a check mark appears next to the menu item.

Enabled If True, menu item can be selected. If False, menu item is grayed and

cannot be selected.

Visible Controls whether the menu item appears in the structure.

WindowList Used with Multiple Document Interface (MDI)

At the bottom of the Menu Editor form is a list box displaying the hierarchical

list of menu items. Sub-menu items are indented to their level in the

hierarchy. The right and left arrows adjust the levels of menu items, while

the up and down arrows move items within the same level.

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 100 of 124

The Next, Insert, and Delete buttons are used to move the selection down

one line, insert a line above the current selection, or delete the current selection,

respectively.

INTRODUCTION TO VB BUILT-IN DIALOGUE BOXES

A function is similar to a normal procedure but the main purpose of

the function is to accept a certain input from the user and return a value which

is passed on to the main program to finish the execution. There are two types

of functions, the built-in functions (or internal functions) and the functions

created by the programmers.

MsgBox () Function

The objective of MsgBox is to produce a pop-up message box and prompt the

user to click on a command button before he /she can continues. This format

is as follows:

The first argument, Prompt, will display the message in the message box. The

Style Value will determine what type of command buttons appear on the

message box, please refer Table 10.1 for types of command button displayed. The

Title argument will display the title of the message board.

Table: Style Values

Style Value Named Constant Buttons Displayed

0 vbOkOnly Ok button

1 vbOkCancel Ok and Cancel buttons

2 vbAbortRetryIgnore Abort, Retry and Ignore buttons.

3 vbYesNoCancel Yes, No and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 101 of 124

We can use named constant in place of integers for the second argument to

make the programs more readable. In fact, VB6 will automatically shows up

a list of names constant where you can select one of them.

Example: yourMsg=MsgBox("Click OK to Proceed", 1, "Startup Menu")

 and yourMsg=Msg("Click OK to Proceed". vbOkCancel,"Startup Menu")

are the same.

 yourMsg is a variable that holds values that are returned by the MsgBox ()

function. The values are determined by the type of buttons being clicked by

the users. It has to be declared as Integer data type in the procedure or in

the general declaration section. Table 10.2 shows the values, the corresponding

named constant and buttons.

Table: Return Values and Command Buttons

Value

Named

Constant

Button Clicked

1 vbOk Ok button

2 vbCancel Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vbIgnore Ignore button

6 vbYes Yes button

7 vbNo No button

Example

i. The Interface:

You draw three command buttons and

a label as shown in Figure

Figure

ii. The procedure for the test

button:

Private Sub Test_Click()

Dim testmsg As Integer

testmsg = MsgBox("Click to test", 1,

"Test message")

If testmsg = 1 Then

Display.Caption = "Testing

Successful"

Else

Display.Caption = "Testing fail"

End If

End Sub

When a user click on the test

button, the image like the one

shown in Figure will appear. As the

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 102 of 124

vbExclamation

 user click on the OK button, the

message "Testing successful" will

be displayed and when he/she

clicks on the Cancel button, the

message "Testing fail" will

bedisplayed.

Figure

To make the message box looks more

sophisticated, you can add an icon

besides the message. There are four

types of icons available in VB as shown

in Table

Table

Example

You draw the same Interface as in

example 10.1 but modify the

codes as follows:

Private Sub test2_Click()

Dim testMsg2 As Integer
testMsg2 = MsgBox("Click to
Test", vbYesNoCancel +
vbExclamation, "Test Message")
If testMsg2 = 6 Then
display2.Caption =
"Testing successful"
ElseIf testMsg2 = 7 Then
display2.Caption = "Are you
sure?"
Else
display2.Caption = "Testing
fail" End If
End Sub

In this example, the following

message box will be

displayed:

Figure

 Value Named Icon

Constant

 16 vbCritical

32 vbQuestion

48

64 vbInformation

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 103 of 124

THE INPUTBOX() FUNCTION

An InputBox() function will display a

message box where the user can enter a

value or a message in the form of text.

The format is

myMessage=InputBox(Prompt, Title,

default_text, x-position, y-position)

myMessage is a variant data type but

typically it is declared as string, which

accept the message input by the users.

The arguments are explained as follows:

 Prompt - The message

displayed normally as a question

asked.

 Title - The title of the Input

Box.

 default-text - The default text that

appears in the input field where

users can use it as his intended

input or he may change to the

message he wish to key in.

 x-position and y-position - the

position or the coordinate of the

input box.

Example

i. The Interface

Figure

ii. The procedure for the OK

button

Private Sub OK_Click()

Dim userMsg As String

userMsg = InputBox("What is your

message?", "Message Entry Form",

"Enter your messge here", 500,

700)

If userMsg <> "" Then

message.Caption = userMsg

Else

message.Caption = "No Message"

End If

End Sub

When a user click the OK button,

the input box as shown in Figure

10.5 will appear. After user

entering the message and click

OK, the message will be displayed

on the caption, if he click Cancel,

"No message" will be displayed.

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 104 of 124

FILE HANDLING
A file is a collection of bytes stored on the disk with a given name (called

as filename). Every development tool provides access to these files onthe disk.

In this chapter we will understand how to access and manipulatefiles using

Visual Basic.

There are three special controls, called as File controls, which deal with

files and directories. We will also understand how to use these controlsin

this chapter.

File handling

The following are three important steps in handling a file.

• Opening the file

• Processing the file, i.e. either reading the content of the file or writing the

required data into file or both.

• Closing the file

File access types

Depending upon the requirement you can use any of the three

different file access types:

Sequential For reading and writing text files in continuous blocks.

Random For reading and writing text or binary files structured as fixed-

length records.

Binary For reading and writing arbitrarily structured files.

Opening or Creating the file using Open statement

A file is opened using OPEN statement in Visual Basic. At the time of

opening a file, you have to specify the following.

• Name of the file to be opened

• The mode in which file is to be opened. The mode specifies which

operations are allowed on the file.

• File number. Each open file contains a file number. This file number is

used to access the file once the file is opened. The file number must be

unique.

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 105 of 124

Open pathname For mode [Access access] [lock] As [#] filenumber

[Len=reclength]

Option Meaning

Pathname Name of the file to be opened.

Mode Specifies the mode in which file is to be opened.

Valid modes: Append, Input, Output, Binary and Random. If unspecified then

Random is taken.

Access Specifies the operations that are permitted on the open file.

Valid values: Read, Write, or ReadWrite.

Lock Specifies the operations restricted on the file opened by other users.

Value values: Shared, Lock Read, Lock Write, and Lock Read Write.

Filenumber A number in the range 1 to 511. This number must be unique

among open files. Use FreeFile function to obtain the next available number.

RecLength Specifies the size of each record in random files. It should be <=

32767.

For sequential files, this is the number of characters buffered. This is

ignored, if mode is Binary. If the file is not existing then a new file with the

given name is created in Append, Binary, Output and Random modes.

Examples:

 To open TEST.TXT file in input mode: Open “TEST.TXT” for input as #1

 To open NUMBER.DAT file in Binary mode: Open “NUMBER.DAT” for

binary access write as #1

 To open STUDENTS.DAT in random mode with a record length of 10:

Open “STUDENTS.DAT” for random as #1 len = 10

 To get next available file number and then use it: 'FreeFile function returns

the number that can be used as the file 'number while openingthe file

Fn = FreeFile Open “TEST.TXT” for input as #fn Functions related to files

The following are the functions that are used with files. Function Meaning

Dir Returns the name of the file that matches the given name. If file is not

existing, then it returns "" (null string).

 FileLen Returns the length of the file in bytes. LOF Returns the length of an

open file in bytes. EOF Returns true, if the specified file has reached end-of-

file marker. FreeFile Returns the next available file number. Seek Sets or

returns the position at which file pointer is currently positioned. For

random files it returns the number of records read or written so far.

 Filecopy Copies the given source file to target file.

 GetAttr Returns the attributes of the given path.

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 106 of 124

 SetAttr Changes the attributes of the specified file to the given attributes.

FileDateTime Returns the date and time when file was last modified or created.

 Loc Returns the current position of file pointer of an open file.

Functions related to file handling.

Example:

To find out the length of file CHARS.TXT:

fl = FileLen("c:\vb60\chars.txt") To find out whether file with the file

number 1 has reached end-of-file:

if EOF(1) then … end if To check whether STUDENTS.DAT file is existing or

not:

If dir(“students.dat”) = “” then

MsgBox “File students.dat is missing”

Else

Process the file

End if

Statement related to file Input and output

The following statements are used to perform input or output to file and

other operations such as opening and closing. Statement Meaning Close

Closes an open file Get Read a record from the given position of the specified

file.

READING FILE

Input() Returns the specified number of characters from the given file.

Input # Reads data into specified list of variables from the given file. Line

Input # Reads a complete line from the given file.

Open Opens the given file in the specified mode.

Print # Prints the specified data to the given file.

Put Writes a record to the given position of the specified file.

Write # Writes the specified data to the given file.

Statements related to file handling. Not all statements are available in all modes.

So, the following table shows the availability of each statement in each of the

three access types.

Statement Sequential Random Binary Close X X X Get X X Input() X X

Input # X Line Input # X Open X X X Print # X Put X X Write # X.

Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 107 of 124

BOF, EOF Properties

 BOF Indicates that the current record position is before the first record
in a Recordset object.

 EOF Indicates that the current record position is after the last record in
a Recordset object.

Return Value

The BOF and EOF properties return Boolean values.

Remarks

Use the BOF and EOF properties to determine whethera
Recordset object contains records or whether you have gone beyond the limits
of a Recordset object when you move from record to record.

The BOF property returns True (-1) if the current record position is before the
first record and False(0) if the current record position is on or after thefirst
record.

The EOF property returns True if the current record position is after the last
record and False if the current record position is on or before the last record.

If either the BOF or EOF property is True, there is no current record.

If you open a Recordset object containing no records, the
BOF and EOF properties are set to True(see the RecordCount property for
more information about this state of a Recordset). When you opena
Recordset object that contains at least one record, the first record is the
current record and the BOF and EOF properties are False.

If you delete the last remaining record in the Recordset object, the
BOF and EOF properties may remain False until you attempt to reposition
the current record.

This table shows which Move methods are allowed with different
combinations of the BOF and EOFproperties.

MoveFirst,

MoveLast

MovePrevious,

Move < 0

Move 0

MoveNext,

Move > 0

BOF=True, EOF=False Allowed Error Error Allowed

BOF=False, EOF=True Allowed Allowed Error Error

Both True Error Error Error Error

Both False Allowed Allowed Allowed Allowed

https://docs.microsoft.com/en-us/sql/ado/reference/ado-api/recordset-object-ado?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/ado/reference/ado-api/recordcount-property-ado?view=sql-server-2017

 Visual Basic 6.0

From the desk of Mr. Manjunatha Balluli, Asst. Professor, Dept. of CS Page 108 of 124

Allowing a Move method does not guarantee that the method will
successfully locate a record; it only means that calling the specified
Move method will not generate an error.

The following table shows what happens to the BOF and EOF property
settings when you call various Move methods but are unable to successfully
locate a record.

BOF EOF

MoveFirst, MoveLast Set to True Set to True

Move 0 No change No change

MovePrevious, Move < 0 Set to True No change

MoveNext, Move > 0 No change Set to True

DATA ACCESS OBJECTS (DAO)

This is an object model that has a collection of objects using

which you can access a database. This model gives complete

control on the database. This model uses Jet Engine, which is the

native database engine used by Visual Basic and MS-Access. This

was the first model to be used in Visual Basic. Though it is possible toaccess

any database using this, it is particularly suitable for MS-Access database and

not suitable for ODBC data sources such as Oracle and MS-SQL Server.

Make sure you are not using this data control for the work in this class.

This control is suitable for small databases. You might like to study it on your

own.

• The data control (or tool) can access databases created by several other

programs besides Visual Basic (or Microsoft Access). Some other formats

supported include Btrieve, dBase, FoxPro, and Paradox databases.

The data control can be used to perform the following tasks:

1. Connect to a database.

2. Open a specified database table.

3. Create a virtual table based on a database query.

4. Pass database fields to other Visual Basic tools, for display or editing.

Such tools are bound tools (controls), or data aware.

5. Add new records or update a database.

6. Trap any errors that may occur while accessing data.

7. Close the database.

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 109 of 124

DATA CONTROL PROPERTIES:

Align Determines where data control is displayed.

Caption Phrase displayed on the data control.

ConnectionString Contains the information used to establish a
connection to a database.

LockType Indicates the type of locks placed on records
during editing (default setting makes databases read-only).

The arrows are used to navigate through the table rows (records). As indicated, the

buttons can be used to move to the beginning of the table, the end of the table, orfrom

record to record.

DAO METHODS USED TO WORK WITH DATABASE

1. MoveFirst repositions the control to the first record.

2. MoveLast repositions the control to the last record.

3. MovePrevious repositions the control to the previous record.

4. MoveNext repositions the control to the next record.

5. AddNew A new record is added to the table. All fields are set to Null

and this record is made the current record.

6. Delete The current record is deleted from the table. This method must

be immediately followed by one of the Move methods becausethe

current record is invalid after a Delete.

7. Update Saves the current contents of all bound tools

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 110 of 124

Steps to link Student Detail Application to Microsoft Access database:

1. In menu bar go to Add-Ins → Visual Data Manager Dialog box called

Visdata will open.

2. In that select File → New → Microsoft access → Version 7.0MDB

[Microsoft Data Base].

3. Give the file name (Database Name) Eg: STUDENT and then click

Save.

4. Right click on Database Window & Select New Table.

5. Table Structure Dialog box will open, type the Table Name which you

want to create Eg: STUDENT, & click on Add Field give the field Name

as NAME & Click OK.

6. Give another field name as REG No select the type as Integer &click

OK.
7. Give another field name as Address, click OK then Close.

8. Click on Build the Table.

9. Right click on the STUDENT option which is available in the database

window, Select OPEN.

10. Dynaset: STUDENT dialog box will open click Add & Give the inputs &

click UPDATE, repeat this for 2 or 3 inputs. & close the Database

Window.

11. Open the design window Select the Data1 Control and change the

properties DatabaseName Select the data base which is saved in My

Documents Eg: STUDENT.mdb & Click OPEN.

12. In Properties select RecordSource & Select the Table Name Eg:

STUDENT.

13. Select the Text1 control in the design window and change the properties of

DataSource as Data1 & select the DataField & Select the Attribute

Name.

14. Repeat the same process for Text2 & Text3.

CODING

Coding for ADD Command:

Private Sub Command1_Click()

Data1.Recordset.AddNew

Text1.SetFocus

End Sub

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 111 of 124

Coding for UPDATE Command:

Private Sub Command2_Click()

On Error GoTo err1

Data1.Recordset.Update

MsgBox ("One Record is successfully Saved")

err1:

MsgBox ("Record Updated Successfully")

End Sub

Coding for DELETE Command:

Private Sub Command3_Click()
Dim n As Integer

n = InputBox("Enter the ID-No to be searched")

Data1.Recordset.MoveFirst

While Not (Data1.Recordset.EOF)

If (Data1.Recordset.Fields(1) = n) Then
If (MsgBox("Delete Record?", vbYesNo)) = vbYes Then

Data1.Recordset.Delete

MsgBox ("Record deleted Successfully")

Else

MsgBox ("Record found but not deleted")

End If

Exit Sub

End If

Data1.Recordset.MoveNext

Wend

MsgBox ("Record to be deleted not found")

End Sub

Coding for CLEAR Command:

Private Sub Command4_Click()

Text1.Text = ""

Text2.Text = ""

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 112 of 124

ADO (ActiveX Data Object) Data Control

The ADO (ActiveX Data Object) data control is the primary

interface between a Visual Basic application and a database. It can

be used without writing any code at all! Or, it can be a central part

of a complex database management system. This icon may not appear in

your Visual Basic toolbox. If it doesn’t, select Project from the main menu, then

click Components. The Components window will appear. SelectMicrosoft

ADO Data Control, then click OK. The control will be added toyour toolbox.

• As mentioned in Review and Preview, previous versions of Visual Basic

used another data control. That control is still included with Visual Basic

6.0 (for backward compatibility) and has as its icon:

You need to go to Project/Components and select the Microsoft ADO

Data Control as shown below. In the example below, I had already made the

selection so you can see the icon at the bottom right in the Toolbox.

Put a ADO Data Control on your form. You then want to go to

Properties and Select (Custom). This will then give you the three dots to bring

up the Window shown below.

As you can see in the screen below, you can now specify where the data

source is etc. First, we will use the Use Connection String option andthe

Build Button. You will then see the screen entitled Data Link Properties.

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 113 of 124

That is shown in the second screen picture below.

THE ADODC CAN BE USED TO PERFORM THE FOLLOWING TASKS:

1. Connect to a database.

2. Open a specified database table.

3. Create a virtual table based on a database query.

4. Pass database fields to other Visual Basic tools, for display or editing.

Such tools are bound tools (controls), or data aware.

5. Add new records or update a database.

6. Trap any errors that may occur while accessing data.

7. Close the database.

ADODC PROPERTIES:

Align Determines where data control is displayed.

Caption Phrase displayed on the data control.

ConnectionString Contains the information used to establish a

connection to a database.

LockType Indicates the type of locks placed on records

during editing (default setting makes databases read-only).

Recordset A set of records defined by a data control’s

ConnectionString and RecordSource properties. Run-time only.

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 114 of 124

RecordSource Determines the table (or virtual table) the data

control is attached to.

• As a rule, you need one data control for every database table, or virtual table,

you need access to. One row of a table is accessible to each datacontrol at any

one time. This is referred to as the current record.

• When a data control is placed on a form, it appears with the assigned

caption and four arrow buttons:

The arrows are used to navigate through the table rows (records). As indicated,

the buttons can be used to move to the beginning of the table, the end ofthe table,

or from record to record.

ADODC METHODS USED TO WORK WITH DATABASE

1. MoveFirst repositions the control to the first record.

2. MoveLast repositions the control to the last record.

3. MovePrevious repositions the control to the previous record.

4. MoveNext repositions the control to the next record.

5. AddNew A new record is added to the table. All fields are set to Null

and this record is made the current record.

6. Delete The current record is deleted from the table. This method must

be immediately followed by one of the Move methods becausethe

current record is invalid after a Delete.

7. Update Saves the current contents of all bound tools

Steps to link Employee Detail Application to Microsoft Jet 4.0 database:

1. Right click on ADODC Control which is in the design window.

2. Select ADODC Properties, Property Page dialog box will open.

3. Click on Build, Data link properties dialog box will open, Select

Microsoft Jet 4.0 OLE DB Provider then click Next.

4. Select Database Name from Select Access Database Window, i.e.,

NWIND.MDB & click OPEN

5. Click on Test Connection, You will get Test Connection Succeeded then

click OK

6. Select Record Source from Property Page Window, Select command type

as 2-adcmd Table & Select table Employee click on apply & then OK

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 115 of 124

7. Select the Text1 control in the design window and change the properties of

DataSource as ADODC1 & select the DataField & Select the Attribute

Name as Employee Id.

8. Select the Text2 control in the design window and change the properties of

DataSource as ADODC1 & select the DataField & Select the Attribute

Name as First Name.

9. Select the Text3 control in the design window and change the properties of

DataSource as ADODC1 & select the DataField & Select the Attribute

Name as Last Name.

10. Select the Text4 control in the design window and change the properties of

DataSource as ADODC1 & select the DataField & Select the Attribute

Name as Title.

Select the Text5 control in the design window and change the properties of

DataSource as ADODC1 & select the DataField & Select the Attribute Name

as Address

REPORT GENERATION

You have learned how to build a database in Visual Basic 6 in previous

chapters, however, you have not learned how to display the saved data in a

report. Reports are important and useful in many respects because they

provide useful and meaningful information concerning a set of data. In this

chapter, we will show you how to create a report in Visual Basic 6. In previous

versions of Visual Basic 6, there is no primary reporting. Previous versions of

Visual Basic 6 uses Crystal Reports tool, a software from Seagate.

Fortunately, Microsoft has integrated a good report writer into Visual Basic

6, so you no longer need to use Crystal Report.

Steps in building your report in Visual Basic 6

Visual Basic 6 provides you with a data report designer to create your

report, it is somewhat similar to data report designer in Microsoft Access. The

data report designer has its own set of controls which allow you to customize

your report seamlessly.

The steps in creating the report in VB6 are listed below:

Step 1: Adding Data Report

Start Visual Basic as a Standard EXE project. From the Project menu

in the VBE, select Add Data Report in the dropdown menu.

Now, you will be presented with the data report environment, as shown
in Figure. The data report environment contains six controls, theyare
RptTextBox, RptLine, RptFunction, RptLabel, RptImage and RptShape.

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 116 of 124

You can customize your report here by adding a title to the page header
using the report label RptLabel. Simply drag and draw the RptLabel control
on the data report designer window and use the Caption property to change
the text that should be displayed. You can also add graphics to the report
using the RptImage control.

The Data Report Environment

Step 2: Connecting the report to database using Data Environment Designer

Click the Project menu, then select Data Environment. from the drop- down
menu. The default data environment will appear, as shown in Figure

Data Environment

Now, to connect to the database, right-
click connection1 and select Microsoft Jet 3.51 OLE DB Provider (as we are
using MS Access database) from the Data Link Properties dialog (as shown
in Figure 40.3), then click next.

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 117 of 124

Now, you need to connect to the database by selecting a database file from
your hard disk. For demonstration purpose, we will use the database
BIBLIO.MDB that comes with Visual Basic, as shown in Figure.

The path to this database file is C:\Program Files\Microsoft Visual

Studio\VB98\BIBLIO.MDB. This path varies from computers to computers,
depending on where you install the file.

After selecting the file, you need to test the connection by clicking

the Test Connection button at the right bottom of the Data Link Properties
dialog.

If the connection is successful, a message that says 'Test Connection

Succeeded' will appear.

Click the OK button on the message box to return to the data
environment. Now you can rename connection1 to any name you like by right-
clicking it. For example, you can change it to MyConnection. You may also
change the name of DataEnvironment1 to MyDataEnvironment usingthe
Properties window.

Step 3: Retrieving Information from the Database

In order to use the database in your report, you need to create query to
retrieve the information from the database. Here , we will use SQL command
to create the query. First of all, right click on MyConnection to add a command
to the data environment. The default command is Command1, you can
rename it as MyCommand, as shown in Figure.

Visual Basic 6.0

From the desk of Amarjeet kumar, Asst. Professor, Dept. of Page 118 of 124

MyCommand

In order to use SQL command, right-click MyCommand and you can see its
properties dialog. At the General tab, select SQL statement and key in the
following SQL statement:

SELECT Au_ID, Author FROM Authors ORDER BY Author

This command is to select all the fields from the Authors table in the
Biblio.Mdb database. The command ORDER BY Author is to arrange the list
in ascending order according to the Authors' Names.

Now, you need to customize a few properties of your data report so that it can
connect to the database. The first property to set is the DataSource, setit to
MyDataEnvironment.

Next, you need to set the DataMember property to MyCommand,as shown in
Figure

Properties of DataReport1

Visual Basic 6.0

From the desk of Amarjeet Kumar, Guest Professor, B.S Collge Page 119 of 124

To add data to your report, you need to drag the fields from MyCommand in
MyDataEnvironment into MyDataReport, as shown in Figure 40.7.Visual Basic
6 will automatically draw a RptTextBox, along with a RptLabel control for
each field on the report. You can customize the look of the labels as well as the
TextBoxes from the properties window of MyDataReport.

The Final step is to set MydataReport as the Startup form from the Project
menu, then run the program. You will see your report as shown in Figure.You
can print out your report.

The Final Report

